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1. Introduction

This annual technical report covers the first year period of NASA grant NAG 1-1065

commencing October 23, 1989 and ending October 22, 1990. The research results were par-

tially described in the semiannual report dated April 26, 1990 and also in the renewal propo-

sal dated July 20, 1990. However, this report is inclusive of the results obtained during the

one year period and, in addition, has appended four papers giving details of the algorithms

and developments forming the background for the current work.

2. List of Scientific Collaborators

A. V. Fullerton* Graduate Student Research Assistant

J. Q. pan Graduate Student Research Assistant

A. E. Pearson* Professor and Principal Investigator

* Received partial support under NAG- 1-1065

3. Completed and Continuing Research

3.1. Modeling Considerations

Our proposed research into the parameter identification for nonlinear aerodynamic sys-

tems presumes that the underlying model can be arranged into an input/output (I/O)

differential operator equation of the generic form 1

,_.,gi (O)Fij (u (t ),y (t ))Pij (P )Ej (u (t ),y (t ))=0 (1)
, ,

t ,J

where [u(t),y (t)] denote input/output variables assumed to be available as measured data on

some time interval, 0 denotes a vector of parameters whose value is to be estimated based on

the given data, Pq (19) is a polynomial in the differential operator p--d/dt for each index pair

(i,j), i=l, . . n 1, j=l, . . n 2, and the [E(i (u ,y),Fij (u ,y),gi (0)] are given (sufficiently smooth)

functions of their arguments that depend on the specified model. Additional data-related

smoothness conditions pertain to the functions gq(t)=Fq(u(t),y(t)) for inexact models in

which the Fq's are not all constants. 2 In the case of exact differential operator models, the

Fij's are all constants, i.e., (1) reduces to the simpler form

,_,gi (O)Pij (P )Ey (u (t ),y (t ))=O, (2)
td

and the algorithm for parameter estimation is especially efficient for this case since the equa-

tion error can be integrated exactly given any I/O pair to obtain an algebraic function of the

parameters. (As detailed in Section 3 of Appendix A.)

i Although scalar valued, vector versions of this equation may be developed to accommodate mul-

tivariable system models. Also, extensions to models which are nonseparable in some of the parame-

ters is potentially possible, e.g., differential delay equation models with unknown time delays.

2 Definitions and illustrations of the terms exact, inexact, separable, etc., are given in the attached

Appendix A paper together with an algorithm for the model (1).
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The augmentedlinearizedequationsfor aircraft discussed in Section 4 of Klein 3 (aug-

mented by aerodynamic derivative coefficients modeled as parametrized functions of aero-

dynamic inputs and responses) appear to be representable by the model (2), albeit with a large

number of parameters. Part of our future work will be directed towards these models.

Although our simulation experience with nonlinear models is not extensive, we can assert

with some degree of confidence that the algorithm has good noise rejection properties in the

case of linear system models with additive noise on the data. As detailed in the attached

Appendix C paper, the noise rejection properties can be explained via the frequency domain

interpretation of the Fourier based modulating functions. Therein also can be found an exten-

sion of the algorithm, via the maximum likelihood technique, to stochastic linear models with

additive white gaussian noise. These results for linear systems show that the bias incurred by

deterministic least squares can be effectively removed in a high noise-to-signal situation.

However, with the exception of linear systems, i.e., systems describable by a linear

differential operator equation like

_'1 /1--1

__,an_ipiy(t)=_.,bn_l_ipiu (t), a0=l (3)
i=0 i=0

it is recognized that the I/O models (1) or (2) may appear vague and somewhat formidable

because the more familiar state vector equations like

.x (t)=f (x (t),u (t),0) (4)

y (t)=h (x (t),u (t),0)

are almost always the starting point into methods for the parameter identification of deter-

ministic systems modeled by nonlinear ordinary differential equations. This is understandable

and, therefore, part of our effort has gone into the relationship between the models (1) and (4)

insofar as parameter identification is concerned. Although this effort is ongoing, one such

relationship we have investigated is that of the "identifiability" property of these models.

This notion has been the subject of a number of papers relative to the state equation model

(4), and we have shown in the attached Appendix B paper that single-valuedness of the g (0)

function appearing in (1) is a necessary property else the ensuing parameter estimation prob-

lem will be ill-posed. Thus, defining the vector function g(0)=(gl(0),g2(0), • • ,gnl(0)) rela-

tive to the model (1), the following "injective" property:

g (0)=g (0") if and only if 0=0" (5)

is a necessary condition else nonuniqueness will plague the parameter estimation problem.

This conclusion is based on an examination of the metric properties of the I/O model (1)

when viewed as a function on the parameter space for 0. As pointed out in Appendix B, this

conclusion is consistent with the results of other investigators when applied to specific state

equation models that possess an equivalent I/O representation, but the latter model makes the

determination of this property more transparent than the test for nonidentifiability of state

equation models.

3 Klein, V., "Estimation of Aircraft Aerodynamic Parameters from Flight Data," Prog. Aerospace

Sci., Vol. 26, pp. 1-77, 1989.
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3.2. Structure Determination

We have extended the algorithm for parameter identification described in the Appendix C

paper to the order determination problem for linear differential systems, i.e., the model (3)

where the order n is unknown in addition to the parameters (a 1 . • an,bo • • bn_l), by making

use of an important property of modulating functions, namely: any modulating function of

order N is also a modulating function of order n for any n<N. Thus, by using a set of

Fourier based modulating functions (as defined by Eq. (4) in Appendix C) of preselected

order N_-naxn, the algebraic equation counterpart to Eq. (10) of Appendix C is the equation: 4

n n-1
_._an_iCDi+ky= __,bn_l_iCDi+ku, ao=l (6)
i=O i=O

k=O,1 • • N-n

Defining the vectors W (m) and V (m) by

W(m)=CDmy, V(m)=CDmU

Eq. (6) can be rewritten as
n n-I

(_,aiq-i)W(m) = (__,biq-i)V(m-1), m=n,n+l '' N (7)
i=O i=O

where q-1 is the unit delay operator, i.e., q-lW(m)=W(m-1). Although arriving at (7) is

merely a redefinition of previously defined quantities, i.e., calculating the sequence pair

(V (m),W (m)) is easy once the finite set of Fourier series coefficients of the input/output data

has been calculated, Equation (7) is now in a form that can utilize well known discrete system

algorithms if desired. However, here we employ this equivalent form because it facilitates

iterating on the order n.

Without going into further algebraic details (full coverage of which will be put in a

forthcoming paper), we use the parsimony principle in finding the simplest model, i.e., the

lowest order, that adequately fits the data. The algorithm minimizes the least squares cri-

teflon:

N

E,, = _en'(k)en(k) (8)
k=n

over the 2n parameters (a 1 • • an,b 0 • • bn_l) iteratively for each n starting from n=l, where

en is defined in terms of the equation error for (7). The decision rule for stopping the itera-

tion is:

fi = nfin{n .Dn<8,1<n._N } (9)

where

'_ The precomputable matrix pair (C,D) and the vector pair (U,Y) of finite Fourier series
coefficients of the I/O data are defined in Section 2 of Appendix C.
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E n -- En+ 1

E1

Thus, the iterations are stopped when the rate of improvement in the least squares criterion
falls below a user chosen threshold 5. ,

The above described algorithm has been applied to several examples, including the fol-

lowing fourth order Chebyshev filter system:

0.0438

G (s) = s4+O.6192s3+O.6i4s2+O.2038s+O.0492 (10)

With the threshold choice _=0.1 in (9), the result of one simulation for the system (10) is

summarized by the graphs in Fig. 1. Shown here is the input/output data on a 40 sec time

interval, a plot of D n verses n, and frequency response plots comparing the magnitudes of the

transfer functions for the original and estimated system. The T--40sec time interval is approx-
imately double the settling time for the system (10); this results in a resolution frequency of

030=2gf/'=0.157 rad/sec which is adequate to resolve the modes in the frequency response for

(10) as seen by the magnitude plot in Fig. 1. The output data included about 10% RMS addi-

tive white noise which accounts for the deviations in the frequency response plots. These and

additional examples confirm that the algorithm has the potential to correctly determine the

system order under moderate noise-to-signal ratios. Further research is planned to extend the

above slrueture determination algorithm to polynomial I/O differential operator models.
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3.3. Data Collinearity

Another problem we have addressed during the past year is the degeneracy in a least

squares estimate caused by feedback. The problem for aircraft has been described in Klein 5

and is most obvious in the case of linear system identification since linear feedback will

directly cause coUinearity between the input/output regressors in the absence of external inputs

during the observation interval. Using the algorithm of the Appendix C paper and the setup

of Fig. 2, we have been studying the tradeoff between estimation accuracy in the parameters

verses the degree of collinearity between the I/O regressor vectors and the RMS noise level of

the contaminating noises (v,w). The degree of collinearity is controlled by inserting the

external signal d(t), i.e., perfect collinearity results (hence complete degeneracy) under the

condition: d (t)--0.

u(t)

IDENTIFIER

OPEN LOOP
SYSTEM

'"' ! °"'"1"

I@ ÷*- *---wCt)
4-

Fig. 2 : Closed Loop System Identification

An example simulation result is shown in Fig. 3 for the system with the forward (open)

loop transfer function:

20

G (s)=.s2+5 s_5. (11)

The top of Fig. 3 shows the input/output data for one particular external signal which resulted
in the normalized correlation coefficient Nyu =-.9963, where Nyu is defined by:

Y'U

Nyu= Irl lul
and (U,Y) are the vectors of finite Fourier series coefficients of the I/O data defined in

5 Klein, V., "On Parameter Estimation of Highly Augmented Aircraft," AIAA Paper No. 89-

3356. Presented at the 1989 Atmospheric Flight Mechanics Conf., Boston, MA, August 1989.
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Section 2 of the Appendix C paper. The lower portion of Fig. 3 is the result of numerous

simulations under different d(t) signals to achieve various values of Nyu while increasing the

levels of the contaminating noises until a threshold 5% accuracy level is attained in the

parameter estimates using the least squares algorithm of Appendix C. This graph shows that

starting from complete degeneracy, i.e., Nyu =-1.0, zero noise level can be tolerated, but mod-

est nonzero noise levels can be present in increasing amounts as collinearity collapses while

still maintaining the accuracy level in the estimated parameters of approximately 5%.

The above results give some idea of the tradeoff between degree of collinearity and noise

levels in the data for the least squares algorithm of the Appendix C paper, but the question

arises as to how this compares with other approaches. This is difficult to answer, especially

since there are not many algorithms available that are designed exclusively for differential

systems. However, one easy comparison we have made is to apply the ARX parameter esti-

mation algorithm of the System Identification Toolbox (by L. Ljung) in MATLAB. 6 We have

been using MATLAB to carry out all simulations anyway, hence the ease in comparison.
ARX identifies a model in discrete time which we then convert to a differential equation

model using the MATLAB algorithm CONTIN designed for this purpose. One result of this

comparison is shown in Fig. 4 which depicts the output error between the actual output and

the predicted output (using the parameter values estimated by the two algorithms) versus

increasing levels of RMS noises in the data. These simulations were carried out under non-

collinearity conditions d(t)_O for the system (11) and show the superiority of the algorithm of

Appendix C in relation to the ARX/CONTIN algorithm for this example. It must be admitted,

however, that ARX is designed for discrete-time models and, therefore, such a comparison is
somewhat biased.

The above study follows an earlier investigation into two approaches to alleviating the

degeneracies of collinearity; one approach utilizes projection operators designed to zero out

the collinear vectors known to cause the degeneracies thereby obtaining a least squares regres-

sion equation with fewer parameters and a better conditioned estimation problem. A second

approach involves subdividing the total observation time interval into subintervals during
which linear feedback is in effect, then redefining the modulating functions relative to one or

more of these intervals in order to formulate the least squares estimation problem specific to

the intervals causing the degeneracies. Neither of these approaches has shown any advantage

to the straightforward application of the Appendix C algorithm, an example of which has been

briefly discussed above for the system (11). An Sc.M. thesis is under preparation by A. Full-

erton detailing these investigations.

3.4. Frequency Analysis

A method of frequency analysis for determining the transfer function G (./co) from tran-

sient I/O data has been formulated in the Appendix D paper using complex valued Fourier

based modulating functions in contrast with the trigonometric modulating functions used in

the Appendix C paper for the parameter estimation problem. We started this investigation

with the expectation that the more explicit representation of the complex form (compare Eq.

6 PC-MATLAB by The MathWorks, Inc.
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(A.14) in Appendix C with Eq. (3) in Appendix D) might be valuable in answering questions

about optimal inputs for parameter identification, optimal modulating functions for noise

suppression, and the like. Although this work is ongoing, it became clear that the complex

form is ideally suited to the frequency analysis probIem since it facilitates a linear-in-

parameters least squares formulation for frequency related parameters. Several variants of the

forrnulation are possible, but all utilize a finite set of the Fourier series coefficients calculated

from the I/O data over time intervals [ti,ti+To], i=1,2, - •, each of duration To=2n/coo, where

coo is a user selected "resolving" frequency.

A simulation result of applying the algorithm detailed in Section 2.2 of the Appendix D

paper is given in Fig. 5 under noise-free conditions for the system with the low pass transfer
function:

1.7s 2+1736.8
G (s

)= s 3+19. ls 2+257.48s +1736.8"
(12)

The nine seconds of I/O data shown was subdivided into nine [0,T0] intervals, i.e., T0=l, and

the algorithm produced essentially perfect estimation of the magnitude/phase plots for G (/'co)

at the frequencies k2r_, k=1,2 • • 6, as shown by the rectangles. Also shown (by the x marks)

are the magnitude/phase values

Fourier-type integrals:

that resulted from a direct computation of the ratio of the

The reason for the errors in the

finite limits of integration in (13).

A similar comparison is shown in Fig. 6 relative to the high pass transfer function:

s3+22.02s
G(s)=

s 3+22.24s 2+247.44s + 1943.23 "

9

fy (t )e-Jk2ra dt
0
9 , k=l,2.. 6 (13)

u (t )e -jic2m dt

above "direct ratio" is due to the finite time data, i.e., the

(14)

This comparison shows that the error in the direct ratio will generally be more pronounced
under nonzero initial conditions.

As the formulations in the Appendix D paper undergo further investigations, one

modification that has been made is the removal of the presumed knowledge of the DC value

G (0). These and additional simulations under noise corrupted data conditions will be the
focus of some our future work in this area.
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Appendix A FA6- 12:15

LEAST SQUARES PARAMETER IDENTIFICATION

OF NONLINEAR DIFFERENTIAL I/O MODELS i

A. E. Pearson

Division of Engineering
Brown University

Providence,RI 029! 2

ABSTRACT

A least squares parameter identification technique is formulated
for deterministic systems modeled by a class of input-output non-
linear differential operator equations. Based on the notion of
exactness in the calculus, a distinction is made on the basis of
whether or not the equation error representation is an exact
differential expression. It is shown how equation error models
which are exact can be integrated for any given input-output data
pair to yield an explicit function of the parameters that can be
used for standard least squares estimation techniques. The formu-
lation is then extended to apply to a class of inexact equation error
system models. Also discussed is the notion of 'identifiability" as
it relates to the class of systems under consideration.

1. Introduction

Consider a class of deterministic systems whose input-output
(I/O) relation can be described implicitly by a differential operator
equation of the form:

E(y(t),py(t)," pny(t),u(t),pu(t)," p_u(t),O) = 0 (i)

where p denotes the differential operator d/dt st, that p2--d2/dt2,
etc. It is assumed that E is a specified scalar valued nonlinear
function of the output y(t) and its first n time derivatives, the
input u(t) and its first m time derivatives, m<_n, and a parameter
vector 0; the latter is to be estimated given the input-output data
[u(t),y(t)], but not derivatives of the data, on some time interval.
In the case of linear systems, i.e., E(.,', -) linear in each of its
arguments, equation error models have long been used in various
parameter identification techniques (see for example Mendel [1]).
A property often taken for granted with linear models is that they
can be integrated, given continuous-time input-output data, or
summed given sampled data for discrete-time system models, in
order to obtain an explicit function of the coefficient parameters.

Such models seem not to have been explored very much for non-
linear systems, the emphasis instead being on techniques that deal

with the normal form state vector equations: 2

(t)=f (x (t),u (t),O)

y (t)=c (x (t),u (t),O). (2)

where ([,c) are given functions, generally nonlinear in x and u,
parametrized by 0. Although these models apply to a broad class
of physical systems, it seems difficult to ease the computational
burden in parameter identification by exploiting any special slruc-
ture like iinearity in certain state variables or parameters. In addi-
tion, unknown initial conditions have to be appended to the
parameter vector for time limited data unless the data is collected
under special conditions.

t Research supported in part by the National Science Foundation
underGrant ECS 8713771.

The purpose of this paper is to show how special structure
can play a role in easing the parameter identification problem for a

class of nonlinear systems subsumed by (1). 3 The main assump-
tions are: (i) that the data is free of measurement noise, and (ii)
for an arbitrary input-output data pair [u (t),y(t)], observed over a
time interval 0<_.t_/', there exists a parameter vector 0* such that
the model (I) is satisfied on t0,T] with O----O*.Thus, modeling
errors are presumed small enough that deterministic least squares
will be meaningful. In addition, standard causality and continuity
conditions are tacitly assumed so that a unique bounded solution
y(t) exists satisfying (I) on any finite time interval [0,T] given
the system parameter vector 0 and a bounded input u(t) over the
interval [O,T], together with the appropriate initial conditions.
However, being able to solve uniquely for y(t) given [0,u(t)],
0-<t-<T, and the initial conditions does not necessarily imply being
able to integrate the parametrized equation error (1) relative to a
data pair [u (t),y (t)! on [0,T ] with the aim of obtaining a function
of 0 useful for parameter identification purposes.

As examples to illustrate the affect of structure, consider first
the forced Van der Pol equation:

j;(t )-.-0t [l-y2(t)]):(t)+O_(t)=u(t). (3)

Noting that pyJ=3y2py, (3) is equivalent to the differential

operator equation:

+02)Y (t )+30tpy3(t )-u (t )=0 (4)_2-0tP

and therefore it is the second total differential of a function z (t,0)
defined implicitly by the solution to the following equation:

2z(t ,0)=(p 2-0 I,P"t"02)Y(t)+3 0 IPY3(t)-uP (t ). (5)

With due consideration paid to unknown initial conditions, the
solution z(t,O) provides the basis for an explicit equation error
function of 0 given that [u(t),y(t),y3(t)] are regarded as forcing
functions on some time interval [0,T]. It is noted that (4) can also
be expressed in the following vector-matrix form:

L-uc t) J
Contrasting with the structure of the preceding example, the

following differential operator equation does not share a similar
property:

c7)

2 For example, the method of quasilinearizatlon (Bellman and Kala-
ba [21).

3The first four sections of this paperfollow closely those of an ear-
lier paper presented at the 1988 CISS meeting at Pnnceton University
131.

88CH2531-2,,'88/0000-183151.00 ,¢ 1988 IEEE 1831



- 11 - _ ,

This equation, which models the position y(t) of a panicle subject
to force u(t) and drag proportional to the square of the velocity,
cannot be iategrated to yield an explicit function of 0 when given
the data [u(t),y(t)]over [0,TI because (7)is not the totalsecond

differentialof any recognizablefunctionz(t,0)as in the case of

the model (4). What is needed is some kind of "integratingfac-
tor" to handle the nonlinear drag term since velocity is not a

measured signal. UtiLizing the differential identity:

p2(y2)=-2y(p2y)+2(py)2, (7) can be equivalently represented by

which is in a form suitable for later reference.

The inherent difference in structure displayed by the above

examples motivates the equation error identification techniques of

this paper. The desired properties of any such technique can be

described abstractly in terms of an operator B whose domain coin-

cides with the range space of E and whose image element as a

function of O is expressed as:

• (O)=B (E (.y dry ,'.p"y ,u ,pu ,- p mu ,0)) for a given data pair [u ,y ].

This integral-type operator should possess the following

properties: (i) e (05 can be explicitly computed as a function of 0

given the input-output data on a time interval [0,T] without the
need to estimate unknown initial conditions, i.e., time derivatives

of the data arc not available, and (iS) e C0) provides a measure of

error in the parameters such that I I e (0) I I =0 correctly reflects the

u'ue value of 0 for a suitable norm II " II under ideal noise-free

conditions. Hence, the minimization problem: rain I ] • (0) II facili-

tates the potential for obtaining a unique least squares estimate of

the parameters under appropriate nondegeneracy conditions on the

data. The ease with which such an operator B can be devised

possessing these properties depends strongly on the nature of the
model.

2. Structural Considerations

Motivated by the notion of an "exact differential" in the cal-
culus, a system model of the input-output type (1) will be called

exact if it admits to the representation:

E(y,py," p"y,u,pu,-" p'u_O)=_ei(p)Ei(y,u,05 (95
i=.l

where the Pi(PS, i=l,2,..n l, are polynomials of degree <__nin the

differential operator p and the E i arc nonunique but sufficiently
smooth nonlinear functions of the triple (y,u,0). If such a

representation does not exist, then the model (1) is said to be inex-

act. The significance of the model being exact is that it is the
total differential of order n with respect to time t of some func-

tion z(t,O), i.e., there exists a sufficiently smooth function z (t,0)

such that for each fixed value of 0:

el I

p" z (t ,O)=3".P_(p)E_O'(t),u (t 5,0). (1O)
l=l

Another basic model property important for system

identification is that of separability with respect to the parameters.

Thus, the model (I) is said to be separable with respect to the

parameters if there exist scalar-valued functions hi(0) and

E i (y _y ,..p_y ,u _pu ," pm u 5, i -1,2,..n 2, such that

E (y .py ," p_y ,u _u ," pm u ,O)

111

=_,hi(O)E,O',PY,'" pay,u_u,'" pmu). (II)
i=l

In this case it is assumed that the vector function h (0) defined by

h (0)=col(h 1_0),' h,a(0)) satisfies the single-valued property:

h(O)=h(0*) if and only if 0:0". 02)

All linear system models are clearly exact and separable with

respect to the parameters. If a nonlinear system model of the

form (1) is both exact and separable with respect to the parame-

ters, then consistent with the above definitions it will admit to the

representation:

E(y d_y,., pny,u#_u,., p'_u,O)=_,hi(O)Pij(P)Ej(y,u) (13)
14

for some polynomials P,i (p) in p, each of degree <_n, and non-

linear functions Ej (y ,u), none of which depend on the parameters
O, together with a vector function h (0) which is assumed to satisfy

(12). Model (45 provides such an example via the equivalent

vector-matrix representation in C6).

Needless to say, inexact and nonseparable parameter models

are inherently the most difficult to handle. The following sections
will indicate ways of devising an operator B with the desired

equation error properties for exact and a class of inexact models. 4

For the most pan these methods will be efficient only for models

which are separable in the parameters, or models which possess at

most one or two nonseparable parameters. Letting a denote the

nonseparable parameter(sS, the model (1) can be referred to as

partially separable with respect to the parameters (a,0) if it

admits to the representation (cf. (I 1)):

E (y _y ,.. p "y ,u ,pu ,'- p _ u ,ct,O)

='_.h i (O)E i (y ,py ,.. p"y ,u 47u ,.. p'_ u ,c0. (14)
t

Time lag systems with unknown delay parameters provide exam-
ples of such models. Furthermore. if the model (1) is both exact

and partially separable with respect to parameters (at,0) (cf. (13)):

E (y ,py,.. p"y,u 47u,.. pmu ,ct.0)

=,_ ((})Pij (p)Ej (,y,u ,a). (15)
I ,]

As before, the vector function h(O) comprised of the hi(0)'s in

(145 and (15) is presumed to satisfy (12).

3. Exact Differential and Separable Parameter Models

Consider the class of exact and separable models represented

by (13). In this case there exist at least two different ways of

defining a linear operator B such that the norm of e (0):
+

•(e)=)".hi(e)_(zei_(p)Ej(y,u)) _(l6)
i j

has the propertiesof a metric functiongiven certainnondegcn-

crecy conditionson the data[u(t).y(t)],0<_t_<7"..In generalterms,

nondcgencracy is guaranteed if the set of functions

{_Pij(p)Ej(y(t).u(t))}, i=1,2", are linearly independent on
J

[0,T] and do not lic in the null space of the operator B. Then the

abstract equation e(0)--O has a unique soh,tion 0=0" which is the

desired value for the parameters under ideal noise-free conditions.
Further,

rain [ k'(O)_ [ provides a least squares estimate under nonideal con-
ditions.

4 Also discussed in [3] is an intermediate class of provisionally ex-

act system models that reduce to exact s)stcms _hen subjected to spe-

cial inputs over finite lime intcr,,als.
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3.1. Operator B Via Moment Functlonals

One way to specifyan operator8 with thedesiredproperties

is via the classicalShinbrotmethod of moment functionals,also

called the modulating function approach, which converts linear

differentialexpressionson a finitetime intervalinto algebraic

equations (see [4]). Using Fourier based modulating functions,

thisapproach has bccn used in Pearson and Lee [5,6]to formulate

parameteridentificationof both linearand polynomial input-output

differentialoperatormodels. The basicingredienthereisa vector

_)(t)of modulating functionsdefinedas follows:

• (t)= Cfft), 0_-<T 07)

where fit)isdefinedby the (2L+l)xl column vectorof commen-
surablesinusoids

f(,5:col[l:coso 0 ,sinto0t;..;co to0,,si to0,](18)

0<_J_<T, Wo --"2rdT

and C is a (2L+l-n)xi2L+l) matrix whose rows are determined
by the end point conditions:

_i)(0) = cb(i)(T) = 0, i=0,1,2"(n-15. (19)

Here ,l,(i)(t)means pic_(t).Itcan be seen from (17)and (18)that

the time derivativesof 4_(t)have the representation

(-l)i¢_(i)(t)= CDif(t), i =0,1,2,-- (201

where D is an operationalmatrix defined by the block diagonal

structure:

To invoke the method of moment functionals for the model

(15 which possesses the representation (13): Multiply both sides of

(I) by _(t), integrate over the time interval [0,T] and interchange
integration and summation over i, then use integration-by-parts

while noting (19) and (20). The result is the following vector
algebraic equation which essentially defines the operator B :

• (8)'-_hi(8)CPii(0)Vj. (22)
I ,j' .

Note that the differential operator p in the polynomials Pij (19) has

been replaced by the block diagonal matrix D of (211. The Vj are
(2L+I)×I vectors defined by

T

vi=IEj (y(t).u(,)Sf(,)at. (231

As discussed in [5,6], these data-related vectors can be computed

by well known DFT/FFT techniques since they ate finite Fourier

series coefficient vectors for the functions vj (t )=E) (y (t ),u (t11 on

tO,T]. The Euclidean norm of e(8) in (22) then provides a metric

function p(0,8*) on the space of adjustable parameters, and the

square of this norm defines a suitable function J(O) for least

squalls mlnll'rll zalllOn ."

J (O)=h' (0)1"2,_(0) (24)

where the (i,j)component of the symmetric nonnegativc definite

matrix f2 isgiven by

[_ l ij =_'.Vk'Pa (D')C'CP: (D)V t . (25)
t,t

Hence, the major computations to set up the ]cast squares problem

in this approach is to calculate the vectors of finite Fourier series

coefficientsfor the data relatedfunctionsEj(yit),u(t))followed

by the innerproducts involvingthesevectorsin (25)to obtainf2.

The null space of the operator g is essentially all functions which

are orthogonal to the sinusoids" comprising f(t) in (I,_). licncc,

choosing a sufficiently large integer L shrinks the null space so

that from a practicalstandpoint nondegeneracy for the least

squares problem means linear independence of the functions

{_Pij(p)Ej(y(t)iu(())},i=I,2", on [0,T]. However, based on
J

finitebandwidth considerations,choosing L largewillnecessitate

a smaller 'resolving frequency' too and therefore a longer [0,T]

interval, as seen from (18). These issues ate more fully discussed

in [5].

3.2. Operator B Via State Variable Filters

Another such B operator is basicallya projectedstatevari-

able filter(see [7,8]).Itsspecificationcan be summarized as fol-

lows. Let F(s) be:a polynomial of degree largerthan n chosen

by the user so thatF-l(s)P(s) is a strictlyproper and stable

transferfunctionmamx with the polynomial matrix P(p) defined

by the Pij(P) in (13). Let the filteredsignalszi(t),O<-t<T, be

definedimplicitlyby zero statesolutionsto the differentialopera-

Ior equations:

F (p)zi (t)=_,Pij (P)E./(y (t),u (t)). (26)
J

In order to obviate dealing with all unknown initial conditions
define a projection of these signals on [0,T] by the relation:

T

ii(t)=zi(t)-coe_W-tteA'_co'zi('Od'c, O_I_'T (27)

where (A ,co) is an observable realization for the homogeneous

equation: F(p)z (t)----0, and W -1 is the inverse of the observabiliw

Gramian for this realization over [0,T], i.e.,
T

_V =!e A't Co ,Co e At all.

Then the integral squared norm of the following function

• (t,0)=Yh_(O)_(t)
i

has the desired metric properties in that the square of this norm

defines a suitable function for least squares minimization:

J(O)=h' (O) _(t)_'(tSdt h(O). (28)

Here _(t) stands for the column vector of functions with com-

ponents _i(t). Hence this specification of the operator B essen-

tially involves integrating the linear differential equations (265

with forcing functions v i(t)=E] (y (t),u it)), performing the projec-
tions in (27) which strip away the affect of unknown initial condi-

tions, and calculating the Gram matrix for these projections in

order to define the least squares function (28/,

3.3. Parlially Separable Parameter Models

Consider the class of models _'hich arc exact and partially

separable with respect to parameters (ct,0) so that the representa-

tion (15) holds. In this case the least squares functions of ¢,2_1

and (28) will take the forms

J (a,O)=h' (0)f/(a)h (0). (29)

and

l(a,O)=h'(O) _,(t,a)_.'(t,a),It h(O) (30)

rc,_pectively. It is seen that the dependence on the nonseparable

parameter a comes through the V t vectors for f/, i.e.,
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T

v_(c_)=j'Ejes',u,cz)fCt)at,
0

while the filtersignalszi(t)depend on otvia

z_(r,aS=F-tLo)_%(P)EsLv,u,aS.
J

If the sourceof the nonseparabilityisa delayparameter,e.g.,

Ej(y(t),u(t),a)=Ei(y(t),u(t-cx)),then as shown in Pearson and
Wuu [9] for differential-delayequation models, itis possibleto

derive the 'variableprojection'functionalusing nonlinearleast

squares theory [10] in order to firstestimate the (x parameters,

afterwhich the separableparametersmay be estimatedas before.

In thisway, itis possibleto decouple the difficuh-to-estimatea

parametersfrom the more straightforward0 parameters.

4. A Class of Inexact DifferentialSystem Models

Suppose the model (1)admits to the representation

E (yj_y,"pny ,u.pu,"pmu ,8)

=Zhi (O)Fij_ ,u)P0 (p)Ej(y,u) (315
J,1

where againthe Pii(P) are polynomialsin p of degree <_anand the
vector function h(O) comprised of the hi(0)'s satlsfics(12).

Model (7) is an example of thisclasswhen expressed in the

equivalentform (8). Itwillnow be demonstrated thatunder cer-
tainsmoothness conditionspertainingto the data-relatedfunctions

gi)(t)definedby

gij(t)=Fi)O'(t),u(t)),0<_.t_<7" (32)

the method of moment functionals of the previous section can be
used as a kind of 'integrating functional' for the inexact model

(31). In order to do so, it will first be noted that the muhiplica-

don of any modulating function 0(t) of order n over [0,T] by an

arbitrary n-tlmes continuously differendab!e function g (t) defined

on [0,T] is again a modulating function of order n on [0,T]. That

is, given that a n-times continuously differentiable function _(t)

satisfiesthe end pointconditions:

O:(i)(O)=O(i)(T)=O,i=0,1,2,..(n-l),

the functionO(t)=g(t)_(t)satisfiesthe same end pointconditions

for any sufficicndysmooth functiong(t) on [0,T]. Relative to

the functionsgij(t)of (32), itwill be assumed thateach such
functioncan be rcpresemed to any desireddegreeof accuracy by a

finiteFourierseries,i.e.,fora sufficientlylargeintegerM,

M

glj(t)=_'.[aii(ra)cosmmot+bij(m)sinmO3ot],O<t:KT (33)
m=0

where the (aij(m),bij(m))coefficientscan be computed via well

known DFT/F:FT techniquesforeach gii(t)function.

Now invoke the method of moment functionalsfor the model

(I) satisfying(31) using the Fourierbased modulating fu,lclions
defined in (17) and noting the aforementionedpropertyof such

functions.Thus, multiplyboth sidesof (I)with the representation

(31) by _(t) while using the expansions (33) for each

Fij(y(t),u(t)) function in (32), integrate over the time interval
[0,T] and interchange integration and summations, use

integration-by-parts while noting (19) and (20). and take into

account the trigonometric identities:

2coskxcosmx ---cos(k-m)x+cos(/+m )x

2sinkxcosmx =sin(k-m )x+sin(k+m )x

2sink:x sifttrtr ----.co_,(k -m )x --cos(]: +m )x.

The result is the vector algebraic equation: s

e (O)=_hj (O)W (i,j)_)j (34)
i,i

where the matricesW (i,,j)and vectorsk'jaredefinedas follows:
M

W(i,j)--.C_ [aij(m)Q,n+b,j(m)Rm]Po(D ) (35)
m---O

T

_,_=j'g i (y (r),u (t))f(t)dr. (36)
o

The matrices Q_ and R_ in (35) are quasi-banded structures that
arise from the interactions between the basis functions in (33) and

the commensurable sinusoids comprising the Fourier based modu-

lating functions in (17)-(18). Their precise representations can be

found in Equations (25) and (26) of Pearson and Lee [11] where

they arose in a different context. The tilde over the various
expressions in (34)-(36), in particular/5 in (35) and f(t5 in (36), is

meant to indicate that the harmonic frequencies in these terms

extend out to (L+M)o_0; again, this is due to the interactions

between the sinusoids in (33) and Fourier based modulating func-

tions. The fact that the Fourier series coefficients for these higher

order harmonics have to be computed is of minor importance from

a computational viewpoint since the DFTPFFT algorithm will yield

many more frequencies than _ actually retained if a high de_m'ee

of accuracy is employed. (Refer to the discussion in Section 2.2

of [5].5 However, noise in the data is important which may neces-

sitate a longer time interval for the data, i.e., a shorter resolving

frequency o0=2n/T, in order to cut off high frequency noise in the

higher harmonics.

The equation error expression in (3..l) essentially defines a B

operator with the previously outlined desired properties, together

with a kind of 'integrating factor' property to handle the inexact

aspect of the model (31). As before, the Euclidean norm of e(0)

in (34) can be used to define a positive definite function J(0) suit-

able for least squares minimization.

S. Uniqueness of a LS Estimate for Separable Models

The single-valued property assumed for the function h(0) in

(12) makes the statement of conditions for a unique least squares
estimate more transparent than the conditions attending other

models and approaches. To elaborate on this a bit more in

relation to the separable model (11) let the functions vi(t) be

defined by

Vi (t)=E i (y (t)_y (t),"p'ty (t),u (t),"p _ u (t))

and define t:(t ,05 by

t(t ,0)= Y'. hi (0)v i (t).
i=l

Suppose 0* is a value of the parameter vector such that c(t,O* )=0

for any input-output pair [u(t),y(t)] on [0,T]. Thus for any par-

ticular input-output pair leading to a particular sequence of func-

tions v i (t):

"'[, ]E(t ,0)= 5". zi (0)-hi (0") v, 0 5.
i=l

Hence uniqueness of any least squares estimate is predicated on

linear independence of the data-related functions v,(t), i=1,2 n :,,

on [0,T|. In turn, this dictates linear independence conditions on

the input-output data and its derivatives in order to guarantee

uniqueness. Of course, it is the projections of these functions via

s It is assumcd that L>_.f; if not. stmply add more modul.tting

functions until L _3f.
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the operator B that must be used to lest uniqueness since deriva-
tives of the dataarc not presumed to be available.

As an example for comparison with other models and

approaches, consider a two compartmental model from chemical

kinetics(Example 7.1 inWalter [12]):

_"(t)=-OtY(t)--e2(1-0_2(t))y(t)+u(t) (37)

2(t)---e2(l-%x2(t))y(t)-04x2(t)

where (0],e_,B3,B4) representparameters to be determined given

the data [u(t),y(t)]over.some time interval.Under the assump-

tionthaty(t) ispositivefor allt of interest,i.e.,y(t)>O,O<_.t_<T,

the following differentialoperator equation can be derived by

eliminatingthe statex2(t)from the above equations:

I 0 0 -u(t)
ln(y (t))

h"(O) 0 p I -u(l)/y(t)

000 I

where the components of the vectorfunctionh (8) aredefinedby:

hl---e10203,h2=0203, h3=04, h4=(01÷02)04.

Bearing in mind the previous discussionfor the model (31),first

approximate the function I/y(t)by a finiteFourier seriesas in

(33) with coefficients(a(m),b(m)) and then replace the pairs

(a (m),b (m)) in (35) by the pairs

(a (m)+m o)ob (m),b (m)-m o__ (m)), thereby achieving an

approximation to the function (p+l)(l/y(t)) which plays the role

akin to gij(t) in (32),

The validity of extending the model (31) to the example (37)

will require a greater degree of smoothness on the part of the data
since the differential expression (p + l )( l /y (t )) is evaluated in
terms of the approximation for lly(t)..However, apart from the

question of approximation, it is noted that since there is a one-to-
one map between h and 0 (except for a set of measure zero) the

necessary and sufficient conditions for the existence and unique-
ness of solutions to the parameter identification problcm entail
linear independence of the four signals:
[y(t),py(t)-u(t),p(lny(t))-u(t)/y(t), 1] on [O,T]. This should

be compared with the 'generating series' analyses given in [12]

for deciding the issue of 'structural identifiability' of the model

(37). That is, not only is the issue of 'identifiability' resolved by

inspection of (38), but the conditions for the uniqueness of a least

square estimate can be related to linear independence of the pro-

jeetions of the appropriate signals.

6. Conclusions

Input-output nonlinear differential operator equation models
have been classified according to the calculus notion of exactness

for differential expressions. It has been shown that exact

differential models can be integrated to yield a positive definite

function suitable for least squares parameter identification given

the llO data on a finite time interval. This is not possible for
inexact differential models. However, under a smoothness condi-

tion on the data, a kind of 'integrating functional' has been found

via the classical method of moment funclionals that permits

integration of the parametrized equation error for a class of inex-

act models. The formulations also facilitate determining condi-
lions on the 1/O data that guarantee uniqueness of a least squares
estimate.
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APPENDIX B

A. E. l_ano.+

Divisioe of E_g_'lng
_nnvn UnJv_

IU 02912

.Ommmhp, d h IM_ _

lm_ Iq_d, • Demml_ lm

Ad_tract

Ha q_ecifiedsetor_ _ statediffa.=atl

eqtutttom IX_r,_ -,, _la/v_lent in_t..o,qmt ditT_ egera-
_r modd. tl_m tl_ l,tn_ model has tl_ _dtl for d_-qdm"l tix
t.uc of the /dent/fiabUiry property of the former model in a
sm_ghcforwaN manner. _ Im_rty is d_cur_ed in _la_o_ to
the _ of we//_s for the least _ltm'e_ lint•meter
kle_aficalion of a class of inlmt-o._t madeh that are sepm-able

the l_ame_.

latro_ctioa

S_ d_=_tLal equ_om of fix form

_ ,=/ (z,,, ,e)

y,,,t, (x,u,e) (])

_mdmm the most commonly reed mu'fing _int forInvcsti&a-

dora intothepanm:_ ide_d/icati_aof deu:mim_'_c nonlinear
_er=atial r/stems. G/v_a the input-output data [u (t)_y0)1 on
some time _n_a_ 0_, mged_erwit_ t_e funcdom f(x_,.O)
and h(:_,,e),• number of methods are avaihblefores_aa_g

i_'_mctcr vector e such as _on, ;,,_t
_aixdd_g and th_ like. A tl_o_dc_ issue ¢o_idc:_d by
tmnmd t-ve.sdgator_, e.g. [1-3], is that of the "idendfiab_t_" of
the model (1). Although the defuddo_ v•ry somewhat from one
h_ve_tigator to another,failureofd_emodel (1) to be iden_aable
usmdly means • kindof over-_on or degeneracy in
that it cannot be de_ot_tntted that there exists • suitable i_put
d_ _O) a_d/o_ ;.,;_ r¢_ x0_(0) s_latlt theimepa_o.

of _ state _lUadom eonwpondmg w _y two d_finct pamme-
tin"v_Ctol_e, tlxl eb, e,_e#, ffv_ rise to _oludonS y,(t) and

• quival_t tn_t/ou_ut d_fi_ operator model of the l_=_c
turin

£ (y .n_,,--p"y ,_ pu ,.-p". ,e),,0 (2)

p _ thediff_umialoS_ntt_d/drso flintp=,,d:/&:,
_., has theIX_Ztislformaki_ thisde_'m_o_ mor_ mm-

_m, mat im)vided math _m _lul_ _dsts. i A simple es.tmple
il]u_a_g th_ d_m_do, is d_ v_ b'di_rm ws_m (Example 2
_., [21):

i-l÷=+(l+:)u
¢

y,.e(l+:). O)

_._+_. (4)

of s kast tqums pmLmememimstion tlgo_tl_ which b _plicsbl¢ to
zm_La subcllsses of tlz Izaedc model (2).

The laue_r model elegy failsto be identifiable no matter what
dcf_fio_ is employed since h is completely independ_t of t_
panunete_ e. A lessobvlo_ e=Jmapleis tbc following second
e_r sym_ (t_ is F.xa_pk t _, [31):

_t-sFp+egFr_

ia-e_p+e+_: (5)

Ifitisassamcd that Y0) is of _ sign for _II t_0,T], e.g.,
y(t)>0, 0_S:T, th_ (5) has _ fol_owL_g_lmVa_-_t bO w.Ja-
lion:

where p _)-_/y, "I_ Ide.a_thm_ _ or calsexamox¢
(actuallythenoaid=tifi_ilit_)willIx made evidentafter• dis-
cusdon of• m_lara oftl_model (2)whi_ inchule_(6).

Separable I/O Models

lannmm, i.e., _ rJdst scalar functions &_(e) and
Ei0'ttry,"p"y,u_ou,"p',,), i,,1,2,"_ 1, such I!_ th_ ftmcd(m E

/= (2) _lmi,. to d_ relmm_lo.

£ @_ ,-p . y ,_ ._u ,..pm_,,e)

Ist

- T.s, (e_, (y_r_,'+,'y ,_,+,u.-p=,, ). (7)
i,,l

P'Ormy lalmt-o_ut l.Ltr [*'0 _ (: )10. [0,7"I, kt am fm_iom
V+(/)Ixdef'-_edby

v,O),_O,(+)_Ct),..p"_(O,,,(t),..p=,,(O) (8)

l ,d,2..n 1

II I

e(e,t)=Y._(e)v_0). (9)
i,,l

Ife* is any value of _ system _ distinct from 8 and
[u(O,y(O] is amy valid input.output pair, th_ the function
S(e,0, ,_) defm_ by

IKe,e. ,O,,_e,,)-_*_) 00)

makes clear the meeudty or the tmgle-valuedee_ of the vector
ttatcti_ # (0) oomprit_ of'the #/(e)'r_ i.e., fix coMition:

_r(e)=#(e*) lf_s m]y If e,,,e, (H)

is n_er, u_ _ .my Immm_t_ z_tmati_ _ixme _ _ the
I/0 model ('2) wbiela is _-pm'able i_ the pm'tm_l_n according to
C/) is doomed to ftil.m. _ is clear from d_ _osr, id_adon
that I_e,e* ,t) _m Ira)vide for d= bids _ • metr_ fu_tioein

0H2642-7189/0000-062451.00 © 1989 IEEE s_4
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ISmemet_ spiceonlyif{!I)holds.=$=_J inin _ve

way, my _ squen_ e_xa_on scheme which b basedon

input-output,ha for the modet 03 will tm¢ be we.U-Uo,_.aifOl)

2 Comtm_: _ f&.E+) fur the model (6) can be
deftoed u

#z=i. &=-.-et, #e,ese, r.-_. tee, (12)

EI-e_I_y)--p(_), E_,, Es,_ 2, £4=u--_. (13)

both I/O mode_ (4) ,rod (6) poca_s t (8) fuacdo_ d_u
fail to satisfy eoedi_on (11), i.e. 1(8) b desenenu: t_ (4) while
(12) makez evident the ovet-_on of (6) with respect
w 1be(_,00 im_meu_, tb=e ek_ _t e,x/_a_ inputfu_-don
N(t) which would fa_iLime • unique _o_ of the 0

lpm'gugt_ give_ the input-o_tput da,L s

Atsuming tl_ COedition (! 1) holds for -,, ItO model of the
Imedc form (7), it wm_s _k that the least m.usn_ wd-
ma_c_ g_olem is well-posed, However, the questionof un/que-
messof am estimate is dam-dcpeMcnt and is mine difficult to
imiwer, apeci_y wlum only input-output ,4,ut (no derivatives)
b avtil_lc. Tbe follow_ mmmp]e iUusmtx_ this lx,tnL
b F..vau_le %1 inlid

£v,ww/c 3: A _ klne_ mo_l is d_fu_ by

_1_ 1.

The above f=m_don • (0) b _g_e-valued _d mon_ov_ _, o_-
_ne (except for • _et of measure _m); b=ce, the least
¢,qtm_ problem is _ om]y me//-posed but it is alto I_ica]]y
ii_.m in the b=& (B) p_me_. A least _ua_ intimate w_l be

"_miqu¢ ot_y ff the _g ttgrmtor functions ire linearly
/.dq,c_t _ [0,T] which for this ,munpl_ means linear

of dg furor:

v_(__, v4(_),.t.

Cmduding Remarks

The above eza_les make cletr the ae=euiry of • tingle-
Valmmlnett Woperty of an eq_ivtlent tgmt.zeput differen_

• " operator model in te_nLngthe idenfi_tbiHty of the state equation
model (I) for the classof I/0 models i_ ('/), Sm_d amoth_ way,
d_c least _tuees pm'smet_ esd=s_on problem will no{ be well-
Ig_od for this class un/ess_ (11) holdz. The conclusion
_.ache.d in each ,_h esaLmpleis ccmis_-nt with the _sul_
obtained by the cited mv_tigators but _ msie_ to w,ach
when an equ]vsLent I/0 ng_! P_im. The question of unique-
ness of_m e_dm_ will depeud ou _ independence of the
d_-dcpen_nt m_sm fu_tk_. The _ question is mm_
dffficul: to _wa. owing to _he utility of Wojec_g
functions down into • suSspace(using for e=m_ple stsm vm'i_bl¢
_l_en) /_ order to obv/ate _ w_ =nimown _ -._
bon_s_ m_di_.

_t

This me.arch _ mq,pm_l +,, pm't by tt_ Nadom_d $cim_
tl_ _ x 2, the equivalent I/O model is found to be+ Foundation under Ch_t _ 871_771.

e_.e,,,.._ ('Dbo_ with

£_,._, £z.T_-_, £s'T,O=_')-_y . £d.1.

d_u'_erized by ,my pm_,r i_..ou_t pair U, (O,y (0] on [0,T],
gan be defined only ff t way can be found u_ovm-oomethe w,o_,_ity of
de_ng with th_de.tiv_ve_ of the data; _ a wry iz discus_ in [4]
dsmugh the use of projected m_ vm-iabkfflum or mom_ f_ct_onsls
f_ ,qpecialsubebum_of themode!(2).
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PARAMETER IDENTIFICATION
OF LINEAR DIFFERENTIAL

SYSTEMS VIA FOURIER
BASED MODULATING

FUNCTIONS"

A.E. PEARSON'AND F.C. LEE

Abstract. The parameter identification of linear differential systems is consid-

ered from the viewpoint of Shinbrot's classical method of moment functionals using
commensurable sinusoids as the modulating functions. This facilitates a least

squares formulation in which the underlying computations require calculating a finite
set of Fourier series coefficients of time limited input-output data while avoiding the

necessity to estimate unknown initial conditions for a one-shot estimate, or un-

known boundary conditions at each stage for sequential least squares. It is noted
that a fast Fourier transform algorithm can be utilized for these calculations, thus

providing a "fast algorithm" for the identification of continuous-time systems. It is

shown that the frequency domain interpretation can be useful in enhancing the

signal to noise ratio of the modulated data in the presence of noisy measurements.
A maximum likelihood estimate is developed for the stochastic case of additive

white gaussian noise in the data which effectively removes the bias when the

parameter identification is considered in a recursive mode. Simulation results are
included to illustrate the developments.

Kell Words--Parameter identification, continuous time linear differential systems,

least squares estimate, maximum likelihood estimate, Fourier modulating functions,

fast Fourier transform algorithm.

1. Introduction

The identification of linear differential systems can be undertaken in a

deterministic vein using the classical steady state frequency domain approach

for estimating the system transfer function, or using a variety of methods based

on a differential equation model in the time domain which would include

quasilinearization, state variable filters, model reference techniques and adapt-
ive observers (Young's survey, 1981). In a stochastic vein, the known methods

would include generalized least squares, instrumental variables, maximum
likelihood and extended Kalman filtering techniques (Young's survey, 1981;

Astr6m, 1981). The deterministic methods are computationally simpler but may

incur significant biases in the presence of noise. The stochastic methods, while

promising to remove the biases asymptotically, are computationally demanding

to a degree that they are more likely to be found discussed and used in a

* Received by the editors June 18, 1985 and in revised form December 9, 1985.
This research was supported in part by the National Science Foundation under Grant ECS-
8505799 and in part by the Air Force Office of Scientific Research under Grant AFOSR-85-0300.

x Division of Engineering, Brown University, Providence. RI 02912, U.S.A.
Institute of Control Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC.
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discrete-time format. Although a continuous-time model can be constructed
from a discrete-time counterpart, the methods for accomplishing this are

unwieldy and potentially unreliable due to such difficulties as nonuniqueness.
Hence, a direct attack on the problem is clearly preferred if a continuous-time
model is desired. Such is presumed to be the case here.

Another classical method that can be applied to linear differential systems is
Shinbrot's method of moment functionals, also called the modulating function

approach, which facilitates converting a differential equation on a finite time
interval into an algebraic equation in the parameters (Shinbrot, 1957). In this

regard let p denote the differential operator d/dt so that p2 = d2/df, etc., and
consider the following nth order differential equation model relating an input-

output pair (u(t), y(t)) for a single input-single output system:
m n-I

Xo,,..p'y t)- Xob._,p',,.), ,,o=
As introduced by Shinbrot, _b(t) is a modulating function of order n relative to a
fixed time interval [0, 7"] if it is sufficiently smooth and possesses the property
that

¢_;)(0) = ¢")(T) = O, i = O, 1..... (n- 1), (2)

where ¢('a(t) means piep(t), i.e., ¢(t) and its first (n-l) derivatives vanish at
both end points of the time interval [0, 7]. The significance of this property for
system identification stems from the fact that if (u(t), y(t)) is presumed to
satisfy the model (1) on [0, T] then the multiplication or modulation of both sides
of (1) with ¢,(t) followed by integration-by-parts over [0, T], while noting (2),
leads to the relation,

" foTo( - 1)/ a._i y(t)tp(i)(t)dt

,- 1 fo r--- _o= (-1)i b,..i u(t)_i)(t)dt, ao = 1. (3)

Furthermore, it" {¢,i(t)}, i = 1, 2 ..... K, is a set of linearly independent
modulating functions of order n on [0, 7], a vector algebraic equation results
which can be used to obtain a least squares estimate of the parameters (ai, b_),

i = 1, 2, ..., n, provided some nondegeneracy conditions are upheld. It is noted
that the prime reasons for using such modulating functions are to avoid
differentiating the data and to avoid estimating unknown initial conditions for
time limited data.

• The above idea has been pursued using modulating functions which stem
from Hermite polynomials, as in Takaya (1968), the Poisson process, as in
Fairman and Shen (1970) and Saha and Rap (1979; 1980; 1982; 1983), spline

type functions, as in Maletinsky (1979), and trigonometric or Fourier type
functions, as in the authors' (1983)*. However, with the exception of Shinbrot
(1957), Maletinsky (1979) and the authors' works (1983; 1985), it will be found

_fThe extension to other models has also been considered such as lineartime varying systems with

polynomial coefficients(Loeb and Cohen, 1965; Fairman and Shen, 1970; Saha and Rao, 1983) and

certain types of nonlinear models (Shinbrot, 1957; Saha and Rao, 1983; Pearson and Lee, 1985).
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that certain anomalies exist in the other formulations cited in that either a very

long time interval is assumed, or the initial conditions are constrained in some
way, etc. Notwithstanding these anomalies, the modulating function method has
remained relatively obscure due in large measure to the rather severe computa-
tional burden associated with the linear functionals on the data in (3). Thus, with

the current emphasis on recursive methods in system identification, computing
these linear functionals at each stage appears cumbersome unless some type of
"fast algorithm" is available. Since the fast Fourier transform (FFT) is such an
algorithm for the discrete Fourier transform (DFT), and since the latter can be
used to calculate the Fourier series coefficients of a time limited signal with

great accuracy, it appears as though the modulating function approach should be
re-examined for continuous system identification using Fourier based modulat-
ing functions. Although some aspects of the formulation have been developed in
the works cited earlier, a number of issues remain to be examined even in the
linear case. These include the handling of noise, structure determination

procedures, optimal inputs for parameter identification, as well as the experi-
ence to be gained via simulation studies.

The contribution of this paper is to show how the frequency domain

interpretation can be used to advantage in ameliorating the effects of random
noise even in a deterministic setting and, further, to develop a maximum
likelihood estimate within the context of the modulating function approach in
order to eliminate the bias in the sequential least squares estimate when the

data is corrupted by additive white gaussian noise. The maximum likelihood
estimate will be a modification of the Levin (1964) algorithm for discrete

systems identification, later analyzed in detail by Aoki and Yu (1970 a; b),
tailored to fit the formulation of this paper for differential systems identification.
Computer simulations will be presented to illustrate each of the developments.

2. Least squares estimate

A deterministic least squares estimate is formulated in this section given the
input-output data (u(t), y(t)) over a fixed time interval [0, T] for a one-shot
estimate, or over a sequence of time intervals [ti, ti+l], i = 0, 1..... each of
duration T, for a recursive estimate. Consider the set of commensurable
sinusoids {cosmtoot, sinmtoot), m = 0, 1 ..... M, where tOo ffi 2n/Tplays the
role of a "resolving frequency" in the identification problem. This role will be
discussed in the section on computational considerations along with guidelines

for choosing (T, M). It could be expected that for a specified order n in the
model (1) there can be found any desired number of linearly independent
modulating functions simply by choosing M sufficiently large and subjecting
appropriate linear combinations of these sinusoids to the end point conditions
(2). Although there are many ways of doing this, a systematic procedure is to
separately form linear combinations of functions from the two sets {cosmtOot)
and {sinmtOot}, m = 0, 1, 2 ..... M, and subject each combination to the end
point conditions (2), the only stipulation being that M satisfy (2M+ 1 - n) > 0. As
shown in the Appendix, this (offline) procedure leads to (2M+ 1-n) linearly

independent modulating functions, ¢,(t), i = 1, 2 ..... (2M+ 1-n), which can
be put in the vector-matrix representation:

_(t) = C/(t), O<_t<_T, (4)
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where f(t) is defined by the column vector of sinusoids:

f(t) = col [1, coswot, sino_ot, cos2wot, sin2_ot,

.... cosMwot, sinMwot],

O<-t<-T, Wo = 2z/T, (5)

and the rows of the (2M+l-n)x(2M+l) matrix C are determined by the
solution to Vandermonde type matrix equations. Further shown in the Appendix
is the important fact that the matrix C has full rank. The role of this matrix as a
projector for the least squares problem will be clarified below. Since by
construction O(t) is a vector of modulating functions of order n it satisfies the
end point conditions (2):

0_°(0) = ¢,t°(T) = 0, i = 0, 1, 2 ..... (n-1). (6)

It can be seen from (4) and (5) that the time derivatives of O(t) have the
representation,

(-1);O°_(t) = CD_f(t), i = O, 1, 2 ..... (7)

where D is an operational matrix defined by the block diagonal structure:

o_-oo ,a [o[_ooll[_o..... °]]
Multiplying both sides of the model equation (1) with ¢_(t) followed by

integration-by-parts over [0, T], while noting (6), there results the vector
analog to (3):

" fo ro (- 1); a,_ O('_(t)y(t)dt

"-1 fo r= _ffio (-1)i b__i O('_(t)u(t)dt, ao = 1. (9)

Taking note of (4), (5) and (7), the preceding equation is equivalent to
R R-1

_o a_ CD'Y = ,Xo _ CD'U, ao = ], 0o)

where (U, Y) represent finite Fourier series coefficient vectors of the data
defined by

E f:U = u(t)f(t)dt, Y = y(t)f(t)dt. (11)

Rearranging (10) in terms of the parameter vector 0 defined by

0 = col [-al ... -a,, b] ... b,] (12)

and the partitioned matrix F defined by
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F = [D "-IY... Y., D "-1 U ... U], (13)

there results the least squares regression equation in standard form:

CF0 -- CD"Y. (14)

Hence, forming the normal equations for (14) and assuming that CF has rank
(2n), the one-shot least squares estimate is given by (prime denoting transpose)

@ = [F,C'CF]-IF,C,CD, Y. (15)

Here, it is assumed that a sufficient number of modulating functions have been
chosen so that

(2M+l-n) -> 2n, i.e., 2M - 3n-1 (16)

else there are fewer algebraic equations than unknowns upon which to base the
one-shot estimate.

In the case of sequential least squares, (14) is replaced by

CF(i)O = CD"Y(i), i = O, 1, 2 ..... (17)

where at each stage the underlying quantities are supplied by the finite Fourier
series coefficient vectors of the input-output data taken over sequential time
intervals It,, t,+l], i = O, 1, 2 ..... each of duration 7". Standard sequential least

squares theory can then be applied.to (17) in constructing a recursive solution
{0(i)). (See, for example, Mendel (1973).) In this case the number of
modulating functions need be chosen subject only to the previously stated
inequality: (2M+l-n)>0, c.f. (16).

2.1 Aspects of the least squares estimate The parallelism between the
differential equation model (1) and the algebraic equation derived in (10) may
suggest the interpretation that the latter is a transformed version of the former.
However, it is important to underscore the facts that (i) (U, Y) are finite Fourier
series coefficient vectors extracted from the infinite dimensional transient data

on [0, 73, and (ii) the matrix C plays the role of a projector on the finite
dimensional space to which the computed vectors (U, Y) belong because this
matrix acts to "strip away" the explicit influence of the unknown initial and
boundary conditions, i.e., without this matrix the unknown boundary conditions
on derivatives of the data would have to be appended to (10). These two

projection aspects can be used to distinguish the Fourier based modulating
function approach from other methods*.

Conditions on the initial data and forcing function for (1) which would

guarantee the existence and uniqueness of the one-shot estimate in (15), or
convergence of the recursive estimate based on (17), have not yet been

t An alternative method which employs state variable fdters and a projection operator to annihilate

initial condition effects of an integrated equation error function on [0, 7"] is discussed in Pearson
(1976). Comparatively, it is believed that the Fourier based modulating function approach is
superior due to the computational advantage of employing the FFT algorithm and the potential for

ameliorating noise.
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determined but will surely involve the notions of minimality of the model,
excitation of system modes, and the like. As necessary conditions, it is

straightforward to show that the system must not be in steady state operation
and that the input must not be a linear (zero memory) feedback on the output,
else some columns of CF will be linearly dependent. Likewise, each of the
Fourier coefficient data vectors (U, Y) must contain at least n nonzero

components, i.e., at least n frequencies must be present, else linear depen-
dence will occur. In this connection it can be noted from (10) and (13) that order
determination for the model (1) (within the context of the Fourier based

modulating function technique) relates to finding the smallest integer n for which
the columns of the following matrix become linearly dependent:

C [D" Y, D _-1Y ..... Y, D "-1U ..... U ].

Procedures for testing such linear dependence will also reflect back on condi-
tions involving the initial data and forcing function for (1). Hence, effective order
determination procedures and conditions for the existence and uniqueness of the
least squares estimate are important interrelated topics for future investigation.

2.2 Computational considerations The choice of (7", M) can be guided in
reference to the amplitude plot of a system transfer function sketched in Fig. 1.

Amplitude

Amplitude

(,00 (-DO (:00 (.,00 (DO _0 0

we

led

I

w_

=-- Frequency

---Frequency

Fig. 1. A frequency domain interpretation.
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As a first consideration, which is 'Rased on the desire that the frequencies

retained in the pair (U, 10 should cover the system bandwidth while excluding
higher frequency noise, it is clear that the highest frequency in the modulating
functions, Mtoo, should be comparable to the system bandwidth W, say 25%
higher. Assuming W_is approximately known, a quantitative statement of this is

Mwo _ 1.25W_. (18)

Likewise as shown in Fig. 1, the value of T should be chosen sufficiently large so
as to assure reasonable resolution in distinguishing system modes of the

transfer function, via the resolving frequency tOo = 2z/T. However, this
consideration is rather qualitative. A more quantitative measure of choosing T
can be based on the bandwidth relation (18) and the number of algebraic

equations formed from the modulating functions, i.e., (2M+ l-n), together with
the total number of such algebraic equations one wishes to use in constructing

the least squares estimate. Thus, considering the case of a one-shot estimate, if
it is desired that the number of such algebraic equations should approximately
equal double the number of unknowns, then M should satisfy (2M+ 1 - n) _ 4 n
which together with tOo = 2rt/T and (18) implies the relation (2n unknowns
presumed):

4n_r (19)
T _ --_--c .

Based on approximate knowledge of the system modes and a priori
knowledge of contaminating noises in the frequency domain, it will be advan-
tageous to be more selective in choosing the frequencies used in defining the
modulating functions _. If rnitOo, i = 1, 2 ..... M represent such frequencies
where the mi are integers satisfying mi<m,+ _ and M satisfies (2M-n > 0), the

formulation is easily modified to reflect this selection by changingf(t) in (5) to be

defined as

f(ti = col [cosmltOot, sinmltOot ..... cosm_tOot, sinm,,tOot] (20)

and redefining D in (8) as

[[ o.l][ o.2] [ oo.]]  21,D = too diag -ml 0 ' -m2 0 ..... -m M 0 "

The simulation results will illustrate the advantage of this flexibility*.

The most important computational aspect of the Fourier based modulating
function approach is the direct frequency domain interpretation afforded by the

For example, the zero frequencycan be deleted if there is an unreliable DC value in the
measurements.
It shouldbe noted that the simplestructureof the operationalmatrixD in(8) or (21)makeseasy
the computingof powers D_, O<-i<-n,as requiredin (13)-(14). Althoughalternative rearrange-
ments of the sinusoidscomprising/(t) in (5) or (20) are readilyaccomodated by rearranging
columns of C, any such rearrangementswill generally alter the convenient block diagonal
structureof D.
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vectors (U, Y) and the efficiency with which these vectors can be computed by
an FFT algorithm. In order to clarify this point, let z(t) denote a data function on
[0, T] and assume uniform sampling in generating the discrete samples
zi = z(ih), h = T/N, i = O, 1..... N. Then (5)and (11)imply determining the
following integrals (complex form):

fo r z(t)exp(jmwot)dt, m = O, 1, ..., M.

Although the real and imaginary parts of the above integral can be evaluated by
passing z(t) through a bank of appropriately tuned harmonic oscillators, greater
flexibility is offered by using well known digital approximations. For example,
the standard parabolic rule yields

or z(t)exp(jmwot)dt

=-g- Zo+Z,_ + 4,_ a z,W"+2 • z,W"' + o(h4),"= ..... i=2,4 ....

where W = exp(j'2_t/N) and o(.) is the order of the error as a function of the
sampling interval h. Assuming N is a power of 2, the usual FFT algorithm can be
used to evaluate the DFT of the sum on the RHS of the above yielding the
Fourier series coefficients for m = 0, 1 ..... (N-l), i.e.,

The computational savings of this algorithm for large N are well known.
However, a special FFT-type algorithm can be devised in consideration of the
fact that only M Fourier coefficients are needed and that N is likely to be chosen
much larger than M for good accuracy in the approximation. The efficiency of

such a partial FFT algorithm can be shown to be log2M/M (Markel, 1971; Lee,
1984).

2.3 Simulation results for the one shot LSE

2.3.1 Low pass system Consider first the low pass system defined by a
Butterworth filter with bandwidth 5 [rad/sec] (see Fig. 2(a)) and the transfer
function,

125
Hi(s) = s3 + 10s2 + 50s + 125" (23)

The objective is to identify the four unknown system parameters 0 = { 10, 50,
125, 125} using the one-shot least squares estimate (15) based on time limited
input-output data over a T = 2z [sec] time interval with the initial conditions
arbitrary and the input drawn from a colored gaussian random signal generator
with bandwidth 5 [rad/sec]. A sample of the input, the corresponding noise-free
output, and the output contaminated by an additive white gaussian noise with a
20% RMS noise-to-signal ratio is shown in Figs. 2(b), (c) and (d), respectively.
The Fourier series coefficients for the first M modes in the data were calculated

using the first M components of the parabolic approximation (22) with either
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Fig. 2. Least squares identification of Hi(s).

N = 256 or N = 512, as indicated in Fig. 2(e) t. Since the number of unknowns is

4, the minimum number M_need_d Dr a one:shot_ est_ate is basedop
(2M+l-n)_>4, i.e., M-3. Due to J_he random nature of the signals, ten
separate runs have been made for each M from 4 to 13 and the resultsaveraged

to yield tbe curves plotted in Fig. 2(e), The normalized error criterion for the
estimated parameters is defined by

1

V 1'1 II,_o II= ,Z_ j j • lOO% (24)

where 0i* is the true parameter value and K is the number of parameters.

1" The LMSL (1982) was used to provide the integration routine (DVERK) for generating the

"continuous" data and as the source for an FFT algorithm to compute the DFT's of the "sampled"

data.
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Except in the noise-free data case, which gives essentially zero error for any
M->3 and either N = 256 or N = 512, the'results summarized in Fig. 2(e) show
that a minimum error is reached around M = 6 or 7. This is explained by the
consideration that as M increases from the minimal value needed to satisfy the
modulating function constraints (2), i.e., M = 3, the estimation error decreases
because more information in the data is used until somewhat beyond the system
bandwidth at which point more noise than signal will be picked up causing a
deterioration in the identification accuracy. Taking account of the Bode plot (the
dotted curve in Fig. 2(e)), the results are consistent with the frequency domain
interpretation, although the identification scheme is formulated in the time
domain. The difference between the N = 256 and N = 512 curves in the noisy
case reflects the increased accuracy due to a smaller sampling interval h.

2.3.2 Band pass system Consider as a second example the band pass
system with the transfer function,

14. 0625s 2
H2(s) = s4 + 5.325s 3 + 189.84s 2 + 466.17s + 7724.7 " (25)

This system was excited with a colored gaussian random signal of bandwidth 15
[rad/sec] to obtain input-output data over a T = 2:r [sec] time interval with
arbitrary initial conditions. The Bode plot and an example run of the input, the
output, and the noise corrupted output signals are shown in Figs. 3(a)-(d),
respectively. The RMS noise-to-signal ratio of the additive white gaussian noise
at the output is 20%.

The simulation results summarized in Fig. 3(e) used two groups of modulat-
ing functions comprised of frequencies defined by the following:

Group One: {0, I, 2 ..... M} forM= II, 12 .... , 17.

Group Two: {M, M+ 1 ..... 14} forM= 0, I ..... 9.

In each case the curves have been obtained by averaging the results over ten
runs. The error criterion is the same as in (24) relative to the parameter vector

0 = {5.325, 189.84, 466.17, 7724.7, 14.0625}. The results for Group One are
similar to those of the first example and can be explained analogously, i.e., the
estimation error goes through a minimum as M increases from the value M = 11
(below the bandwidth) to the value M = 17 (above the bandwidth). The results
for Group Two can be explained on the basis that as M decreases from the value
M = 9 the estimation error decreases because more information in the signals is
utilized by the least squares estimate. However, the curves for both N = 256
and N = 512 flatten out at the minimum because nothing is gained by including
modes below the pass-band of H2(J'W). Hence, the combined results are
consistent with a frequency domain viewpoint in that the most significant
information in the data has a band-pass nature like the system transfer function.

2.3.3 Nonminimum phase system Consider as a third example the non-

minimum phase system with the marginally stable transfer function,
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Fig. 3. Least squares identification of Hz(s).

1.0

B
0.5 "".

0.5s 3+ 2s z+ Os+ 1
H3(s) = s4 + Os3 + 2.5s 2 + Os + O.5625 " (26)

which has imaginary axis poles at (_+j0.5, :!:jl.5) and zeros at (-4.118,
0.059_+j0.695). The objective is to identify the parameters defined by: 8 = {0,
2.5, 0, 0.5625, 0.5, 2, 0, 1}. This system can be expected to be more difficult to
identify owing to the larger number of unknown parameters, i.e., 8 for (26)
verses 4 for (23) and 5 for (25).
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Table 1. Least squares identification of H3(s)

Input DFT 1 s ,
u(t) [0, 7"] Order N ('8" ,=_1(0i- 0i)2)"¢

[0, 2_t] 1024 0.06

512 0.02
O.Olt 3

DC
+

Four
sinusoids

[0, 4z] 256

128

512

256

0.33

1.65

0.07

0.07
[0, 2z]

128 0.08

64 0.26

512 0.003

256 0.003
[0, 4z]

128 0.004

64 0.017

The simulation results summarized in Table 1 illustrate some of the trade-

offs between frequency content of the input signal, the length of the time
interval [0, 7"], and the order N of the DFT used in the parabolic approximation
(22) for the one-shot identification of (26) under noise-flee data conditions t. In

the case of the single mode input signal, u(t) = 0.01t 3, over a [0, 2:r] time
interval, the identification accuracy is acceptable at [[Ae[[=0.06, but at the
expense of a rather high order DFT (N = 1024). Doubling the time interval to
[0, 4:r], thus having the resolving frequency (to 0.5 [rad/sec]) results in better

accuracy for a lower order DFT (N = 512). The corresponding results show yet
better accuracy when the multi-modal input signal is used consisting of a DE
(constant) plus four sinusoids. In this case acceptable accuracy is attained for
lower order DFT's, especially when the resolving frequency is 0.5 [rad/sec].
Notice that the guideline for T given by (19) yields: T=4nz/_ = 8zr, which is
conservative in light of the results obtained for this example.

3. Maximum likelihood estimate

If noise in the data cannot be effectively blocked by a judicious choice of
modulating function frequencies then the least squares estimate may incur a
significant bias, as is well known in regression analysis. In this case the equation
error for (14), which is represented by

t The numberofmodes Min thevectorof modulatingfunctions(4)-(5) was alsovariedfromM = 7
to 11 in order to cover the system bandwidth(W,=2 [racYsec]).However, tiffs affect on the
identificationaccuracy is secondary underthe noise-free conditions ar,d hence is omittedfrom
Table 1. Note the errorcriterionfor zt0 in Table 1is slightlydifferentthan (24) for tiffsexample.
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e = CF0 - CD"Y, (27)

will not be negligible. A maximum likelihood estimate will be developed in this
section * which is aimed at the asymptotic removal of the bias for the situation

depicted in Fig. 4. Here the measured input-output data is denoted by (x(t),
y(t)) respectively, while the noise-free input-output signals are designated by
(u(t), w(t)). The noise signals (v(t), n(t)) corrupting the pair (u(t), w(t)) are
assumed to be uncorrelated zero mean stationary gaussian random processes.
Under these circumstances the formulation of the preceding section, which led

to the algebraic equation (10) for data over a single [0, 7"] interval, can be
rewritten as follows for data given on K nonoverlapping time intervals, [ti, ti+ 1],

i --- 1, 2 ..... K, each of duration T (c.f. (10)):

"ca'D"W1
c1'Dn-1WI

cl'Ua
c2'D"W1

0 ... 0 -1 -aa ... b. =0 (28)
-1-al ... b c2'U1

c,. 'D" W _
c,. 'D "-1Wx

_c,. ' U _

where ci' is the ith row of the matrix C, and (Ui, W,) are the Fourier coefficient

=l !

x(t)

I

_ n(t)

,(t)

Fig. 4. Signals for the maximum likelihood estimate.

i" The algorithmof Levin (1964) for discrete systems identilicatiott, originallydue to Koopman
(i937) andanalyzedin detailbyAokiandYu(1970a; b), willbe modifiedto fit the formulationof
Sec. 2.
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vectors for the noise-free input-outpuL signals (w(t), u(t)), ti<-t<-ti+T.
Similarly, (X. Yi) and (Vi, Ni) will denote the Fourier coefficient vectors for
(s(t), y(t)) and (v(t), nit)) respectively. The matrix-vector equation (28) will

henceforth be denoted by

GK'Px ffi 0. (29)

With (Ui, Wi)in the column vector p_ of (28)replaced by (Xi, Yi) (or (Vi, Ni)),
this new column vector will be denoted as qx (or rx). From Fig. 4, it is easy to
see that

r_ = qx-Px. (30)

Since (v(t), n(t)) are assumed to be zero-mean gaussian processes, the Fourier
coefficients vector r_ in (30) is a gaussian vector with a covariance matrix

R, = cov(r_)

which can be calculatedasfollowsby assumingtheauto-and cross-correlation

functionsofthe noiseprocessesare known:

where

E [(c'DV;)(Nj'D'c)]

c'D'E{ pt,+, rt,+, ts)dsl.D,cffi J,, f(t-ti)v(t)dtJt' n(s)f'(s-

[ g t,+r 1, t,+T |

= c'DIj ' j, :(t-ti)R,.,,(t,s)f'(s-_)dsdt)D'c.
t t_ t_

R,,.(t,s)= E[v(t)n(s)].

(31)

As a special case, when (v(t), n(t)) are uncorrelated white gaussian processes
and t_+l-ti>-T, the evaluation of (31) can be greatly simplified. By assuming
that R_ is invertible, the conditional probability density function can be written
as follows;

P(q, I_,GffP_ = O) = const IRgl-½exp(-lllqK-p_llR_.,)

where _ is defined by

_j = co1[-1, -al ..... b.]. (32)

Then the maximum likelihood estimate of 0 can be obtained by

[n_n IIq:P_,ll_:,

subject to

G,'p_ = O.

(33)

Using a Lagrange multiplier vector A, the above constrained optimization
problem is equivalent to
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¢,_nx(HqK-pjc IIR__,+ _.'GFPK).

Taking as a first consideration the partial derivatives with respect to Px and A,
and equating them to zero, the result is

- 2R, -_(q_-/;D + C_ = 0, G_'L = 0.

The precedingequationsyield

= 2(G_'R.GD-IG_'qK

G (GK' )-*G_'q_x = q_-R_ _ RxG_ (34)

by assuming that (G_'R_Gx) is invertible. Then, it follows that

= (qK'Gx)(GK'RKGK)-I(GK'q_)

= IIGK'q_II,Z,.,_,,,-,,

where the second equality is due to (34). Thus the optimization problem (33) is
reduced to

minimize [lG_' qKII(c_,,,,c,,-,. (35)

Although (35) is a nonlinear optimization problem for which the global
optimum is in general difficult to find, an iterative algorithm will be suggested to
find the local optimum by observing the following fact: If the weighting matrix
(Gx'R_cGs) -I is temporarily substituted by a given constant matrix W, the
problem is equivalent to minimizing a quadratic cost. More specifically, to
minimize with respect to _ the quadratic form,

ItC,,'eKIt_, (36)

the vector G_'qx can first be rewritten as follows (c.f. (28) and (13));

I'D"Y1 q 'D"-IY1 ...

2'D"YI c2'D_-IY1. ...

Lc.'Z)"r, c.,'D"-'Y,, ...
-CD"YI CD "-IYI ...

CD"¥x

"CD" Y]

CD" Yx

Gxt qx =

CD"-'Yx ...

cr.

c21x,/ -a,
Cm 'XxJ

CXll[_-  1
cx.j L £. J
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Then (36) is equivalent to

Ila,'q_ll_ = [-1, o'1

=[-I, 0']

crl,w l
CD"YxC'FJ LCD'Y_C'Fx_J 1-11 (37)

o,,l[;,]1221 -Qz2_J " (38)

Hence, it is evident that

leads to

D _ 2o IIG_q_ll. I = o

= f222-i.f221, (39)

since the symmetry of Win (37) implies 1"221= $212'. Note that for W = I, 0 in
(39) minimizes the squares of the equation error (27), and hence is exactly the
same solution as suggested in Sec. 2. Based on these observations, the

following iterative algorithm is suggested:

The iterative algorithm

Initialization: Letting G_'RxGK = I, calculate 0o in (39).
Step 1: Calculate O 1 in (39) by letting W = (G_'RxGK) -1 [ _o.

Step 2: Check the convergence of the estimates. If it tends to converge and
some more improvement is desired, replace the value of 0 o by that of 0 1 and go

to Step 1; otherwise stop.
The initialization step minimizes the squared norm of the equation errors; in

Step 1, the weighted squared norms of the equation errors will be minimized;
and so forth.

Special case 1: When (v(t),n(t)) are uncorrelated stationary white gaussian
processes and t,+l-t,>T, then

Rr = diag[R R ...R],

where

R = cov[cl'D"NI,cl'D"-XN1 ..... cl'Va,

.... c,.'D"NI,c='D'-aN1 ..... c,.'V1]. (40)

By denoting

and

Gx' E diag[G' G' ... G'],

qx " col[q(1), q(2) ... q(K)]

, (41)



37

Parameteridentificationofdifferentialsystems 259

where

q(i) = col[cl'D"Yi, cl'D"-IYi ..... cl'Xi,

.... c,.'D"Y, c,.'D"-lYi ..... c,,,'Xi],

(35) can be reduced to
K

m_n _1 IIc' q(i)I[,o2.c,-. (42)

The optimization algorithm is similar to the general case, but the dimension of
the weighting matrix (G'RG) -1 is reduced by a factor K compared to
(G_'RxG_) -I in (35).

Special case 2: In addition to the assumptiolas made in the Special Case 1,
assume that m = 1, i.e., only one algebraic equation will be extracted from each
non-overlapping time interval. Now R in (40) becomes

R = cov[cl'D"Nt, cl'D"-IN1 ..... cl'V1]. (43)

and G' in (41) becomes _'. Furthermore,

(G'RG)-I= (_'R_) -1 and G'q(i) = _:'q(i)

are scalars. Hence (42) can be reduced to an even simpler form as

(44)

G' i z. _.. _'q(i)q(i)'_I1 q( )ll,c.,,o,-,=i-l i:1 _'R_

= _'(_q(i)q'(i))_
_'R_

= _ (45)
_'R_:

where

B - _lq(i)q'(i).

As is well known in matrix theory, the minimum value and the optimal solution
for (45) are the smallest eigenvalue and its corresponding eigenvector with the
unit first element of the following generalized eigenvalue problem:

(B- oR)_ = o. (46)

The same solution has-been used by Koopman (1937), Levin (1964), Aoki and

Yue (1970 a; b) for the discrete system identification problem. In the statistics
literatures, Sprent (1966; 1969) also suggested this solution and called it a
"generalized least squares solution".
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3.1. Simulation results for the recursive ML and LS estimates The

maximum likelihood estimate developed ifi the previous section was applied to
the identification of the systems Hi(s) and H2(s) given by (23) and (25), forced
by the same colored gaussian random processes as previously described, i.e.,
bandwidths of 5 [rad/sec] and 15 [rad/sec] respectively. Both the input and
output signals for each system were corrupted as shown in Fig. 4 by zero mean
white gaussian noises, uncorrelated with each other. Recursive identification
was carried out for each system using the data collected over the successive
time intervals [t/, t,+2:r], i = 0, 1, 2 ..... i.e., tOo = 1 [rad/sec], and a 256
point DFT (N = 256) was used for the parabolic approximation (22) in
calculating the Fourier coefficient vectors of the data on each [0, 2_t] time
interval.

The modulating function modes were selected as (0, 1, 2, 3, 4, 5) and (7, 9,
11, 13) respectively for the systems Hi(s) and H2(s), and the resulting
algebraic equations, which numbered 8 and 4 respectively, were summed on
each interval in order to meet the scalar equation requirement of Special Case 2.
Hence, the optimization problem on each [0, 2:r] interval is to find the
eigenvector corresponding to the smallest eigenvalue of the generalized eigen-
value problem (46). This was accomplished using a standard subroutine in the
IMSL (1982).

The results of the recursive identification for each system are shown in the

lower portions of Fig. 5 with the norm (24) plotted as a function of the number of
time intervals. Also shown are the results of the standard recursive least

squares aIgorithm applied to the same data (upper curves). The results clearly
show that the recursive LSE incurs a bias at every noise level which can be
effectively removed using the recursive MLE.

4. Conclusions

Depending on the nature and degree of completeness of a priori knowledge
available relative to the system and noise spectral characteristics, a judicious
choice of Fourier based modulating functions can be effective in ameliorating
noise effects for a deterministic least squares identification based on time
limited data. This has been verified via the simulation results for several

examples. In the case of recursive identification involving noise corrupted data
extracted from non-overlapping time intervals, the maximum likelihood estimate
of Levin (1964), Aoki and Yue (1970 a; b) has been adapted to the modulating
function fo_ulation in order to remove the bias incurred by a standard least
squares algorithm. Future problems include model order determination pro-
cedures and optimal inputs for system identification within the context of the
modulating function technique.
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Appendix: A set of Fourier based modulating functions

Consider the set of commensurable sinusoids

{1, cosmlcoot, sinmlwot ..... cosm_wot, sinmMwot}, (A.1)

where Wo ffi 2z/T and (m_, m2 ..... raM) are selected positive integers
satisfying ml < m2 < ... <mw Within the (2M+ 1) dimensional function space
spanned by the functions in (A.1), there will exist a (2M+ l-n) dimensional
subspace of modulating functions satisfying (2) which can be delineated as
follows. In order to account for the different cases when the model order n is

even or odd, the "integer part" notation In/2] is used: [n/2] stands for n/2
when n is even, or [(n-1)/2] when n is odd.

Cosine form: For each k = 0, 1 ..... M-[(n+l)/2], let
[(n+l)/2]

d?c,k(t) = j_=O ak'/cosmh+/O_ot (A.2)

define a modulating function of order n with the ak.j coefficients chosen such that

¢c,k(i)(O) = ¢c,k('_(T)= 0, i = 0, 2, 4 ..... 2[(n-I)/2] (A.3)

and

[(n÷l)/2]

,_o a,,?= 1, ak, o > O. (A.4)

Sine form: For each k = 1, 2 ..... M-[n/2], let
In/2]

Cs.k ( t) _" j_O bk,j sinmk+io_ot (A. 5)

define a modulating function of order n with the bk.j coefficients chosen such that

dps,k(i)(O) = ¢_s.k(i)(T)= 0, i = 1, 3, 5 ..... 2[n/2]--1 (A.6)

and

[n/2]

j_obh._ = 1, bh,o > 0. (A.7)

With respect to the end point conditions (2), notice that the vanishing of the
odd and even derivatives was not included in (A.3) and (A.6) respectively, since
these conditions are automatically satisfied by the forms assumed in (A.2) and
(A. 5). The existence and uniqueness of the above a,j and b,j coefficients can be
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established by the following Lemma which also yields explicit expressions for
their determination. '

Lemma. The coefficients a,j and b,, i specified in (A.2)-(A.7) are uniquely
determined by Vandermonde type matrices.

Proof for bk,i. For a fixed k in l<-k<-M-[n/2], condition (A.6) is equivalent
to

I TY/k 3'/'/k+ 1

°°,

.°,

V,,,olFo

,,,,+{'X,]-'JP,;,d L o

or

The above equation will be denoted as

Mkbk = - bk, ore,.

By letting )-k+/ = ink*�2, J = 1, 2 ..... [n/2], Mk can be expressed as

The first matrix on the fight hand side of (A.8) is the well-known Vandermonde
matrix; its determinant and inverse matrix can be expressed in explicit forms

(Graybill, 1983). Hence, M, -1 can be explicitly expressed as

1
M,-_= H.(m,+__ m,+i2)

L._,J

0

....... :::::: wher_---e ....... : _- :: :: :

1
"_..z__ 0 ... 0
l_Ik÷ 1

1
0 ... 0

tick+ 2

0
1

_rnk+[_2

(i,/)-elementl,
= c_i /
P,(m,+p) J
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[n/2] [s/2]

- X, fori = 1, 2,

So, bk can be expressed as

bk = -- bk, oM, -1mk,

.... In/2]. (A.9)

(A.10)

and the condition (A.7) implies that

bk,02( 1 + m_ rM,- rMk-a ink) = 1, and bk, o> 0. (A.I1)

It is clear that the value of bk. o is uniquely specified as

1

bk,o = (1 + mkrMk-rMk -1 mk) -r. (A.12)

Hence {bk.j} can be uniquely found by combining (A.9), (A. 10), and (A. 12). The
derivation and proof for ak,# is similar and hence is omitted.

It is convenient for identification purposes to collect the 2M+ 1- n modulat-
ing functions into a single column vector,

q,(t)

-¢,c,o(t)

¢'_,_,-t(.+ _)+m(t: (A.13)

q#,,_-t,,z2j(t)

It is easy to see that these (2M+l-n) modulating functions are linearly
independent, since in the construction procedure (A.2) to (A.7) a new sinusoid
is added as k is increased. Hence ¢,(t) consists of a set of basis functions for the

(2M+ l-n) dimensional modulating function space which is a subspace of the
(2M+ 1) dimensional trigonometric function space spanned by the functions in
(A. 1). Let f(t) denote the column vector of 2M+ 1 sinusoids:

f(t) =-col[l, cosmltoot, sinmltoot ..... cosmt, wot, sinm,,o_ot],

O<t<_T.

Then ¢,(t)in(A.13)can be representedas

4_(t) = of(t), (A.14)

where C is an(2M+l-n)×(2M+l) matrix determined by the {aka, bka} in
(A.2)-(A.7).

The above resultsare summarized inthe followingTheorem.

Theorem. In the (2M+ 1)-dimensionalvectorspace spanned by the set in

(A.1),thereexitsa (2M+ 1-n)-dimensionalsubspaceofmodulatingfunctions

ofordern representedby thevectorfunction¢_(t)in(A.14).The matrixC in

(A.14)has rank (2M+ 1- n).
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Abstract

Several variants are presented of a linear-in-parameters least squares formulation for determin-

ing the transfer function of a stable linear system at specified frequencies given a finite set of
Fourier series coefficients calculated from transient nonstationary input-output data. The basis

of the technique is Shinbrot's classical method of moment functionals using complex Fourier

based modulating functions to convert a differential equation model on a finite time interval

into an algebraic equation which depends linearly on frequency-related parameters.
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1. INTRODUCTION

Methods for determining the transfer function of a stable linear system from input-output

data include correlation and spectral analyses, as well as the direct sinusoidal measurements.

Each of these "nonparametric" identification techniques require either a statistical stationarity

assumption on the data, or a periodic steady state condition to be established, before initiating

calculations of the transfer function at pertinent frequencies. Excellent summaries of these

methods, as well as the analysis of noise effects and finite data lengths, can be found in

Astrom [1], Ljung [2], Soderstrom and Stoica [3], and Unbehauen and Rao [4]. Notwith-

standing noise considerations, long data lengths may be required in order to achieve good

accuracy due to the stationarity or steady state assumption. By contrast, a method is proposed

here that utilizes the frequency content in short data lengths in order to set up a least squares

estimation of the transfer function at selected frequencies. Since short data lengths are used

there is no assumption of steady state operation or stationarity of the data, though there must

be present sufficient energy content in the data at the specified frequencies in order to avoid

degeneracy in the least square estimate. The basis of the technique is the classical Shinbrot

[5] method of moment functionals, also known as the modulating function technique, using

complex Fourier based modulating functions. A forerunner of this approach can be found in

Pearson and Lee [6] which utilized real valued Fourier based modulating functions, i.e., com-

mensurable sinusoids, for the parameter estimation of linear differential systems. Therein also

can be found a discussion of the background of this method with a listing of references.

However, this paper appears to represent the first use of modulating functions in the context

of the "nonparametric" system identification problem. Several variants of a deterministic

least squares estimation of frequency-related parameters that underlie the transfer function will
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be developed below.

2. Least Squares Formulations

Consider a stable linear system with input u (t) and output y (t) modeled on a finite time

interval by the differential operator equation:

A (p)y (t)=B (p)u (t)+e (t) (1)

where (A (p),B (p)) are polynomials in the differential operator p--d/dt of degree less than or

equal to an a priori integer n, and e (t) represents the effect of modeling errors. The problem

considered here is to estimate the transfer function G (j ¢o)=B (j co)/A (j co) at a finite set of fre-

quencies {kco o, k=l,2.- M }, where coo is a user selected "resolving" frequency and M a

chosen integer, given the input-output data [u(t),y(t)] over a finite set of time intervals
: 7 77 : : 7 : :

{[ti,ti+To], i=1, • • N }.1 These time intervals are each chosen of lengt h To=2g/co o and need

not necessarily be disjoint. However, a certain degree of independence in the data collected

over the different [0,T 0] time intervals is necessary in order to avoid degeneracies in the least

squares estimate to be discussed below. Understandably these degeneracies are more likely to

be avoided in normal operating records if the intervals are disjoint. In addition to the upper

bound on the system order n, the DC value of the transfer function is assumed given or can

be measured from the step response, i.e., G (0)=B (O)/A (0) is presumed known a priori. If

this is not the case, then the estimated transfer function can be scaled by the parameter G (0).

The Shinbrot method of moment functionals is a technique for converting a differential

equation on a finite time interval into an algebraic equation by the use of "modulating func-

1 If the system bandwidth coB is known, then choosing (M,co0) such that M co0=c0B will cover

the bandwidth at the knots kco 0, k=l,2 • • M.
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tions". As introduced by Shinbrot [5], t_(t) is a modulating function of order n relative to a

finite time interval 09 ST 0 if it is sufficiently smooth and satisfies the end point conditions:

t_(i)(o)=_(i)(To)=O, i=O,1 .. n-1 (2)

where t_(i)(t)=pit_(t). Clearly, modulating functions can be constructed in many different

ways. 2 Here a specific set of complex valued Fourier based modulating functions is defined in

a way that is conducive to solving the problem at hand, viz., let

_m (t )=eJmttv (1-eJ°_t) n ' 0<_tST0=2r_/co 0 (3a)

m=0,1 • • M

define a set of modulating functions of order n with respect to the time interval [0,T0].

Equivalently by the binomial expansion, each such function is representable by

_m (t)= _ b k e j _m+k),_. (3 b )
k--0

where b k is defined in relation to the binomial coefficient by

bj, = (-1)k _]. (4)

The first representation (3a) makes evident the fact that each _m (t) is indeed a modulat-

ing function of order n, i.e., (2) is satisfied, 3 while the second representation (3b) implies that

calculating linear functionals defined by each _m (t) on a set of functions specified over [0,T 0]

will entail calculating the Fourier series coefficients of these functions at the frequencies ko_ 0,

k=m,m+l .. re+n, re=O,1 ." M. In turn, these coefficients can be calculated efficiently by

DFT/FFr methods which provides an important motivating factor for this analysis. This will

2 See discussion in Pearson and Lee [6].

3 Notice that any modulating function of a fixed order is automatically a modulating function of

any lower order relative to the same time interval. This property facilitates the formulation for any

system of order less than or equal to the upper bound n.
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be discussed further below. The important property of the functions defined in (3) is con-

tained in the following 4

Modulation Property. Let P (p) be a differential operator of order at most n, i.e., a

polynomial in p--d/dt of degree ._n, and z(t) any sufficiently smooth function defined

on [0,To]. Then the modulation of P (p)z (t) with Cm (t) over [0,T o] satisfies

To
m+n

_ ¢m (t )P (p )z (t )dt = _., bt._mP (-jk too)Z_ k (5)
0 k=m

where Z k is the k th harmonic Fourier series coefficient of z (t), i.e.,

To

Z t = !z(t)e-Jk°°t dt. (6)
I

Note that owing to the end point constraints (2) satisfied by each ¢,n (t) function, none of the

boundary point derivatives z(i)(o) or z(i)(To) appear in (5). This is crucial to the ensuing

analysis and, in fact, represents a primary reason for employing the modulating function tech-

nique.

2.1. Formulation 1

A direct application of the above property to the problem posed involves rewriting the

differential operator model (1) in the equation error form followed by the modulation with

¢,,, (t); thus:

4 Proof of this property is given in the Appendix in order to proceed directly with the develop-

ment.

5 The process of going from the model (1) to equation (7) can be viewed as a projection from a

space of functions on [0,To] down into a finite dimensional space spanned by the modulating func-

tions.
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To

In view of (5) the preceding equation is equivalent to

___bk-m (-jkCOo)Y_k -B (-jktoo)U_k = _ bk_mE-k.
k=m k=m

Define the realand imaginary partsof the polynomials (A (jkc%),B (jkco0))as follows:

O3

(8)

A (jk co0)=ot k +j _k, B (jk co0)---'q'k +j Sk

and collect these together to form the 4xl "parameter" vector:

(9)

I]Ok = 13k (10)
Yk "

k

Also, define as follows the 2x4 data matrix _k (i) in terms of the real and imaginary parts of

the k th harmonic Fourier series coefficients of the input-output data corresponding to the time

interval [t i ,t i +To], i =1,2 • .N"

[Y_(i) Yf_(i)-U_(i)-U_(i))]
wk(i)= [-Y_(i) Y_(i) Ufc(i) -U_(i "

The notation for the entries in (11) is explained by

(11)

To To

Y_(i)= Jy(t+ti)coskc%tdr, Yf,(i)= Jy(t+ti)sinkcootdt (12)
0 o

and similarlyfor (U_(i),U_(i)). Then the realand imaginary parts of the equation error (8)

can be collected into the following real valued 2xl vector equation which serves as the start-

ing point for a least squares estimation:

m+n

_., bj:_m W k (i )Oh = e.m (i )
k=m

(13)

m---0,1''M, i=l,2''N.
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The equation error vector in (13) is related to the Fourier coefficients of the original equation

error by

em (i)=m_nbk..m [E_(i)]

Values of the transfer function G(jktoo)=B (jktoo)/A (jkmo) are seen from (9) and (10) to

be related to the parameter vector Ok by the real and imaginary part relations:

_k_'k--13k8k ¢Ck8k--13k_'k
2 2 ' ImG(jkco0)= (14)ReG (jk tOo)=, at: +13k otk2+13k2

or equivalently by the magnitude-phase relations:

2 22,;+8_,
mIc jktOo 2= ai+ i

Starting from a presumed knowledge

G (jk tOk ) -- tan-1 _k tan_ 1 _k

')'k ctk
(15)

00=[A (0),0,B (0),0]' is known, equation (13) can be rewritten in the standard regression equa-

tion format to estimate the parameters 0j:, k=l,2-. M+n given the data over a sufficient

number of [ti,ti+To], intervals, i=1,2 • • N. A consideration of this equation reveals the fol-

lowing:

1) The frequency range covered by the parameters in (13) is (M+n)tO o. Hence, if it

is desired that the transfer function estimate cover a frequency range about 25%

greater than the system bandwidth cob at a resolution too, a choice in (M,to0) such that

(M+n)too = 1.25tOB

reflects this objective.

2) Counting unknowns in (10) and (13), the total number is 4(M+n). Since each

equation in (13) is of dimension 2, counting equations suggests that the total number

N of [ti,ti+T O] intervals should satisfy: 2(M+I)N>4(M+n), i.e., N>2(M+n)/(M+I).

(16)

of the DC value G(0), which implies that
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However, the equations in (13) are partially decoupled with respect to the index m.

Therefore, it seems best to estimate (01, • • On) at the first stage, which corresponds to

m =0. This means that there are 4n unknowns for the first stage requiring that N

satisfy N>2n. Thereafter, the number of unknowns is just 4 for each stage

corresponding to m=l,2.. M, which implies N>2 assuming that the preceding esti-

mates are used in each succeeding stage. This kind of "bootstrapping" of the least

squares estimation facilitates keeping the number of unknowns to a modest level at

each stage.

3) The two row vectors comprising vk(i) in (11) are seen to be mutually orthogonal

for each k and i suggesting a maximal degree of independence for these equations in

utilizing the information content in the data. This is a direct result of the Fourier

nature of the underlying formulation.

Discussion: The above development shows that it is possible to formulate a linear-in-the

parameters least squares estimation problem for parameters (10) that underlie (via (14) or

(15)) the transfer function G(jkcoo) at each k th harmonic frequency. The input-output data

can be time-limited and transient, but must have sufficient energy content at the specified fre-

quencies to avoid degeneracies in the least squares solution. Apart from being highly non-

linear, the relations (14) and (15) involve the difference between parameter related quantities,

e.g., a/cT_-13jc8 k, whose values may be large for large k. This aspect of the formulation por-

tends a potential source of error magnification which is alleviated by the formulation of the

next section.
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2.2. Formulation 2

Given that [u (t ),y (t )] satisfies the model (1) on a [0,T 0] time interval, it follows that

[u (t),y (t)] also satisfies the model

A (-p)A (p)y (t)=A (-p)B (/9)u (t)+A (-p)e (t). (17)

Choosing a set of modulating functions of order 2n to accommodate the upper bound on the

highest degree differential operator in (17) and modulating this equation with the mth member

of this set, the following projected equation error results which is analogous to (8):

m+2n r 1 m+2n

b_-m LA (jk o_o)A (-jk coo)Y_ k -A (jk coo)B (-jk _o)U_k | = _, bk-mA (.jk o_o)E-k (18)
k=m "_ k=m

where b k is defined by, cf. (4):

Noting that A (jk O3o)A (-jk co0) is real while A (jk coo)B (-jkco o) is complex, define real quanti-

ties (a k,o_k,[3 k) by the relations:

ak =A (jk coo)A (-jkcoo), txk +j [_k--A (jk o_o)B (-jk coo) (19)

and collect these into the 3xl parameter vector 0 k defined by

Ok = ¢zk • (20)

k

Also, define the 2x3 data matrix _k (i) by

_ [rf,(i) -U_(i) U/_(i)] (21)
Wk (i)= lYe(i) -U_(i ) -Urn(i) "

where the notation for the entries in (21) is the same as defined in (12). Then the real and

imaginary parts of the projected equation error (18) can be represented by the following real

2xl vector equation:
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m+2n

_7, bk-m _lk (i )Ok = Em (i ) (22)
k=m

m--0,1''M, i=l,2''N.

Equation (22) can be rewritten into the standard regression equation format for setting up

the least squares estimate of the parameters (O1,'" 0--M+Z_) based on the data over [ti,ti+To],

i=1,2 • • N. Again, presumed knowledge of the DC value implies that 0-0=A (0)[A (0),B (0),0]'

is known or, if not, the resulting transfer function estimate can be scaled by the parameter

G (0). Here the estimates of the transfer function are related to the parameters by the real and

imaginary part equations (as found from (19) and (20)):

0[k _k
ReG (jk o_0)=--, ImG (jk o_0)=--- (23)

a k ak

or equivalently by the magnitude-phase relations:

_7 (jk _0)_ = _,ak2+13_ G (jk co0) = -tan -1 13k. (24)

Consideration of the least squares formulation in this case leads to the following:

1) The frequency range covered by the parameters in (22) is (M+2n)o_0; hence, the

guideline (analogous to (16)) for choosing the pair (M,co o) in this case is

(M+2n)o._ 0 = 1.25co B . (25)

2) Counting unknowns in (20) and (22), the total number is 3(M+2n) which would

imply that the total number N of [ti,ti+T O] time intervals should satisfy:

2N(M+I)>3(M+2n). However, the partially decoupled nature of the equation (22)

with respect to the m index suggests bootstrapping the solution from the first stage.

Thus, for the initial stage (m=0), N needs to satisfy N>_3n. In the succeeding stages,

N needs to satisfy N>_2 (since there are 3 unknowns and 2N equations at each such
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stage); this assumesthat the precedingestimatesare used at each succeedingstage

(re=l,2 ." M).

Discussion: Comparing (23) and (24) with (14) and (15) reveals that the second formulation

avoids the potential error magnification problem of differencing large estimated quantities in

calculating the transfer function at high frequencies. However, the second formulation

requires estimating 6n unknowns at the first stage, i.e., the m=0 stage, verses 4n unknowns

for the first stage of the first formulation.

2.3. Formulation 2-Dual

The dual to the formulation of the preceding section is to observe that a given pair

[u(t),y(t)] satisfying the model (1) on a [0,T 0] time interval also implies that it satisfies (cf.

(17))

B (-p)A (p)y (t)=B (-p)B (p)u (t)+B (-p)e (t). (26)

Again choosing a set of modulating functions of order 2n, a development similar to that of
7_'- ---?£ Z_Z--_ ? _- ...... --"ZZ _:-- ..... . - . ? L

the previous section leads to the real 2xl vector equation

m+2n

___ bk-m _lIk(i )()k = _m (i ) (27)
k=m

m=0,1 • • M,

where the data matrix _1, (i) is defined by

/=1,2 • • N

[Uf_(i) -Y_(i) Y_(i)

_tc(i) = [U_(i) -Y_(i) -Y_(i)

and the real 3xl parameter vector _)k is defined by

(28)
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with the entries in (29) defined by

i ]_}k = (Xk (29)

b k =B (jk O3o)B (-jk O3o), otk+j _k = A (jk O}o)B (-jk O)o).

Relations between the transfer function and the parameters in this case are found to be

(30)

at bk -13k bk
ReG Uk 2 2' Imafjk°_0)= 2-------'_%)=' Qt/+13k o_k+13k

for the real and imaginary parts, or for the magnitude-phase:

(31)

b2 tan -1 13k (32)

Comparing (21) and (28) verifies the duality of the two formulations by virtue of the

interchange of input and output. Note that each formulation has the same total number of

unknowns - in general. However, the dual formulation has the potential advantage of reduc-

ing the total number of unknowns in the event of a priori information on a lower degree

numerator polynomial than denominator polynomial in the transfer function. For example, an

"all pole" model means that bk=(B (0)) 2 is known for all k, i.e., a total of 2(M+n) unknowns

verses 3(M+2n) for the previous case. The formulation leading to (27) can easily be

modified to reflect this consideration.

3. Conclusions

Three formulations of a linear-in-the parameters least squares estimation have been

presented for determining the transfer function of a linear system at specified frequencies

given transient nonstationary input-output data. While some comparisons have been noted in

the discussions following each formulation, a clear indication of the pitfalls and advantages of
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each will have to await a thorough simulation study including the effects of noise.

study is currently underway.

Such a
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5. Appendix

To verify the modulation property (5) it is sufficient to consider the differential operator

p(p)=pi for a fixed i._. The result for a general n th degree polynomial P(p) then follows

by superposition. Thus, for sufficiently smooth z(t) on [0,T 0] and COrn(t) defined in (3), the

left side of (5) in this case is

To To

t _m (t )P i z (t )dt = (-1) i I z (t )pi Opm(t )dt (33)

where integration-by-parts has been used i times taking into account the boundary conditions

(2) possessed by each _m (t) function. Substituting the representation (3b) into the right side

of (33), carrying out the indicated differentiation and changing the index of summation

verifies (5) for P (p)=p i as purported.


